Abstract

Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than X-ray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [J. Roy. Statist. Soc. Ser. B 44 (1982) 139–177]. We derive a fast variational inference algorithm for approximate posterior inference in this model, which is complicated by the fact that the logistic normal is not conjugate to the multinomial. We apply the CTM to the articles from Science published from 1990–1999, a data set that comprises 57M words. The CTM gives a better fit of the data than LDA, and we demonstrate its use as an exploratory tool of large document collections.

Keywords

Latent Dirichlet allocationTopic modelInferenceDirichlet distributionComputer scienceMathematicsStatisticsArtificial intelligence

Affiliated Institutions

Related Publications

Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. F...

2017 ACM SIGIR Forum 4048 citations

Modelling Binary Data

INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probabi...

2002 1450 citations

Publication Info

Year
2018
Type
article
Citations
1137
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

1137
OpenAlex

Cite This

David M. Blei, John Lafferty (2018). A correlated topic model of Science. OPAL (Open@LaTrobe) (La Trobe University) . https://doi.org/10.1184/r1/6587330.v1

Identifiers

DOI
10.1184/r1/6587330.v1