Abstract
The coupled-cluster singles and doubles model (CCSD) is derived algebraically, presenting the full set of equations for a general reference function explicitly in spin–orbital form. The computational implementation of the CCSD model, which involves cubic and quartic terms, is discussed and results are reported and compared with full CI calculations for H2O and BeH2. We demonstrate that the CCSD exponential ansatz sums higher-order correlation effects efficiently even for BeH2, near its transition state geometry where quasidegeneracy efforts are quite large, recovering 98% of the full CI correlation energy. For H2O, CCSD plus the fourth-order triple excitation correction agrees with the full CI energy to 0.5 kcal/mol. Comparisons with low-order models provide estimates of the effect of the higher-order terms T1T2, T21T2, T31, and T41 on the correlation energy.
Keywords
Affiliated Institutions
Related Publications
Ab Initio Calculations on the Electronically Excited States of Small Helium Clusters
The vertical excitation energies of small helium clusters, He(7) and He(25), have been calculated using configuration interaction singles, and the character of the excited state...
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Self-Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2
Methods of efficiently optimizing the orbitals of generalized valence bond (GVB) wavefunctions are discussed and applied to LiH, BH, H3, H2O, C6H6, and O2. The strong orthogonal...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations
We describe several improvements to the reaction field model for the ab initio determination of solvation effects. First, the simple spherical cavity model is expanded to includ...
Publication Info
- Year
- 1982
- Type
- article
- Volume
- 76
- Issue
- 4
- Pages
- 1910-1918
- Citations
- 6321
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.443164