Abstract
A direct HF algorithm using the resolution of identity for Coulomb and exchange integrals (RI-HF) was implemented within the program system TURBOMOLE. A variational procedure for the optimisation of auxiliary functions is presented as well as optimised auxiliary basis sets for large basis sets up to Br. The accuracy of RI-HF energies and of MP2 energies based on RI-HF wave functions is demonstrated for a large test set of molecules. Accuracy of first order properties is documented for selected cases. The size dependency of the RI errors and the efficiency of the method are investigated for closo-boranes [BnHn]2− (n = 4–12).
Keywords
Affiliated Institutions
Related Publications
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
The density functional definition of exchange and correlation differs from the traditional one. In order to calculate the density functional theory (DFT), quantities accurately,...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons
A formalism is developed for obtaining ab initio effective core potentials from numerical Hartree–Fock wavefunctions and such potentials are presented for C, N, O, F, Cl, Fe, Br...
Gaussian Basis SCF Calculations for OH−, H2O, NH3, and CH4
Extensive SCF LCAO MO calculations utilizing comparable Gaussian basis sets for OH−, H2O, NH3, and CH4 give SCF energies of −75.377, −76.034, −56.201, and −40.198 a.u., respecti...
Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
Two extended basis sets (termed 5–31G and 6–31G) consisting of atomic orbitals expressed as fixed linear combinations of Gaussian functions are presented for the first row atoms...
Non-empirical pseudopotentials for molecular calculations
Abstract The ability of the atomic pseudopotential proposed in Part I to reproduce the all-electron basis set extension and correlation effects in molecules has been tested on F...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 4
- Issue
- 18
- Pages
- 4285-4291
- Citations
- 1406
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1039/b204199p