Abstract
A method is described for rapidly computing the amount of solar energy absorbed at the earth's surface and in the atmosphere as a function of altitude. The method is a parametric treatment, but the form of the solution and the coefficients involved are based on accurate multiple-scattering computations. In this treatment the absorption varies with the amount and type of clouds, the humidity, the zenith angle of the sun, and the albedo of the earth's surface. Within the stratosphere the absorption also depends on the vertical distribution of ozone. This parameterization for solar radiation is being used in current versions of the global atmospheric circulation model developed at the Goddard Institute for Space Studies.
Keywords
Affiliated Institutions
Related Publications
A box diffusion model to study the carbon dioxide exchange in nature
Phenomena related to the natural carbon cycle as the 14C distribution between atmosphere and ocean and the atmospheric response to the input of fossil fuel CO<sub>2</sub> and of...
The ERA5 global reanalysis
Abstract Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5 reanalysis which, once completed, will embody a detailed record of the global atmosphere...
Perspectives for dye-sensitized nanocrystalline solar cells
The dye-sensitized solar cells (DYSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the c...
Planetary Boundaries: Exploring the Safe Operating Space for Humanity
"Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustain...
Publication Info
- Year
- 1974
- Type
- article
- Volume
- 31
- Issue
- 1
- Pages
- 118-133
- Citations
- 1514
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/1520-0469(1974)031<0118:apftao>2.0.co;2