Abstract
Dihydrides of the formula Rh2(II,II)(tfepma)3H2Cl2 (tfepma = (bis[bis(trifluoroethoxy)phosphino]methylamine, MeN(P[OCH2CF3]2)2), have been prepared by the addition of H2 to the two-electron mixed-valence complex, Rh2(0,II)(tfepma)3Cl2 (1). Three isomeric forms with hydrides in syn (2), anti (3), and cis (4) conformations have been characterized by X-ray diffraction. Photolysis of 2 results in prompt formation of a short-lived blue photoproduct (lambda(max) = 600 nm) and a stoichiometric quantity of H2, as determined by Toepler pump and isotopic labeling experiments. The blue photoproduct was identified as a Rh2(I,I) complex resulting from the reductive elimination of H2, as determined from the examination of bimetallic cores coordinated by tfepm (tfepm = (bis[bis(trifluoroethoxy)phosphino]methane, CH2(P[OCH2CF3]2)2), for which complexes of the formula M2(I,I)(tfepm)3Cl2 (5, M = Rh and 6, M = Ir) have been isolated. The d8...d8 dimer of 5 converts to Rh2(0,II)(tfepm)3Cl2CN(t)Bu (8) upon the addition of 1 equiv of tert-butylisonitrile, a result of halogen migration and disproportionation of the valence symmetric core of 5, which is structurally compared to its two-electron mixed-valence analogue, Rh2(0,II)(dfpma)3Cl2CN(t)Bu (9) (dfpma = bis(difluorophosphino)methylamine, MeN(PF2)2). The halogen migration is captured in Ir2(I,I)(tfepm)3(mu-Cl)Cl (7), which is distinguished by the presence of a chloride that bridges the diiridium centers. Taken together, complexes 1-9 permit the construction of a complete photocycle for the photogeneration of H2 by dirhodium dfpma complexes in homogeneous solutions of hydrohalic acids.
Keywords
Affiliated Institutions
Related Publications
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. II. All-electron comparisons and modifications of the procedure
Recently methods have been developed [L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976)] to replace the core electrons of atoms by ab initio effective co...
Heterogeneous photocatalyst materials for water splitting
This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and...
Hydrogen evolution from water splitting on nanocomposite photocatalysts
The photocatalytic production of H2 in one step is potentially one of the most promising ways for the conversion and storage of solar energy. The paper overviews our recent stud...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons
A formalism is developed for obtaining ab initio effective core potentials from numerical Hartree–Fock wavefunctions and such potentials are presented for C, N, O, F, Cl, Fe, Br...
First‐Year <i>Wilkinson Microwave Anisotropy Probe</i> ( <i>WMAP</i> ) Observations: Preliminary Maps and Basic Results
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 127
- Issue
- 47
- Pages
- 16641-16651
- Citations
- 125
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/ja054371x