Abstract
We present a "parts and structure" model for object category recognition that can be learnt efficiently and in a semi-supervised manner: the model is learnt from example images containing category instances, without requiring segmentation from background clutter. The model is a sparse representation of the object, and consists of a star topology configuration of parts modeling the output of a variety of feature detectors. The optimal choice of feature types (whose repertoire includes interest points, curves and regions) is made automatically. In recognition, the model may be applied efficiently in an exhaustive manner, bypassing the need for feature detectors, to give the globally optimal match within a query image. The approach is demonstrated on a wide variety of categories, and delivers both successful classification and localization of the object within the image.
Keywords
Affiliated Institutions
Related Publications
Object class recognition by unsupervised scale-invariant learning
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible const...
Caltech-256 Object Category Dataset
We introduce a challenging set of 256 object categories containing a total of 30607 images. The original Caltech-101 [1] was collected by choosing a set of object categories, do...
A Discriminative Framework for Modelling Object Classes
Here we explore a discriminative learning method on underlying generative models for the purpose of discriminating between object categories. Visual recognition algorithms learn...
Rectified Linear Units Improve Restricted Boltzmann Machines
Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that al...
Video Google: a text retrieval approach to object matching in videos
We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a s...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 1
- Pages
- 380-387
- Citations
- 266
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.2005.47