Abstract
Big data analytics encounters scalability, latency, and privacy challenges, especially within real-time streaming contexts. We propose the Privacy-Aware Quantum Stream (PAQS), a distributed framework inspired by quantum principles, to overcome these obstacles. PAQS utilizes quantum superposition to effectively represent high-dimensional data, quantum entanglement for sophisticated correlation analysis and anomaly detection, and federated learning combined with homomorphic encryption to maintain privacy without compromising performance. The adaptive switching mechanism balances quantum-inspired and classical processing according to sensitivity and dimensionality criteria. Experiments are conducted on three datasets—OpenStreetMap, MIMIC-III, and KITTI, which show significant improvements: a throughput of 2.53 TB/sec, a 60 % reduction in latency, an anomaly detection accuracy of 92.3 %, and an 85.4 % decrease in privacy violations when compared to baselines. These findings validate that PAQS provides consistent, secure, and scalable real-time analytics, positioning it as a strong solution for smart cities, healthcare, and autonomous transportation applications.
Affiliated Institutions
Related Publications
Radiation Resistant Camera System for Monitoring Deuterium Plasma Discharges in the Large Helical Device
Radiation resistant camera system was constructed for monitoring deuterium plasma discharges in the Large Helical Device (LHD). This system has contributed to safe operation dur...
PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT
Since 1922 when Wu proposed the use of the Folin phenol reagent for the measurement of proteins (l), a number of modified analytical procedures ut.ilizing this reagent have been...
Publication Info
- Year
- 2025
- Type
- article
- Volume
- 14
- Pages
- e32876-e32876
- Citations
- 0
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.14201/adcaij.32876