Abstract
A notation is introduced and used to transform a conventional specification of the non-bonded force and virial algorithm in the case of periodic boundary conditions into an alternative specification. The implementation of the transformed specification is simpler and typically a factor of 1.5 faster than a conventional implementation. Moreover, it is generic with respect to the shape of the simulated system, i.e. the same routines can be used to handle triclinic boxes, truncated octahedron boxes etc. An implementation of this method is presented, and the speed achieved on various machines is given. Essence of the new method is that the number of calculations of image particle positions is strongly reduced during non-bonded force calculations.
Keywords
Affiliated Institutions
Related Publications
Absorbing boundary conditions for the numerical simulation of waves
In practical calculations, it is often essential to introduce artificial boundaries to limit the area of computation. Here we develop a systematic method for obtaining a hierarc...
Inversion Symmetry Breaking by Oxygen Octahedral Rotations in the Ruddlesden-Popper<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Na</mml:mi><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Family
Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demo...
Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions
This article defines the parameterization and performance of MMFF94 for intermolecular interactions. It specifies the novel “buffered” functional forms used for treating van der...
Polymorphic transitions in single crystals: A new molecular dynamics method
A new Lagrangian formulation is introduced. It can be used to make molecular dynamics (MD) calculations on systems under the most general, externally applied, conditions of stre...
An efficient numerical multicenter basis set for molecular orbital calculations: Application to FeCl4
The use of numerical solutions to atomlike single site potentials as a basis for molecular orbital calculations is investigated. The atomic Hamiltonian is modified by addition o...
Publication Info
- Year
- 1995
- Type
- article
- Volume
- 14
- Issue
- 3
- Pages
- 137-151
- Citations
- 42
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/08927029508022012