Abstract
Pyramidalization at the peptide group nitrogen atom is analyzed using N-methylacetamide (NMA) as a model molecule. Mutually orthogonal peptide CN torsion and NH out-of-plane bend coordinates are necessary for a correct description of the energetics of nonplanar deformations of the peptide group. Using such coordinates, ab initio calculations at the MP2/6-31++G(d,p) level of theory show that the energy minimum of the NH out-of-plane bend angle shifts significantly away from zero for nonzero CN torsion angles. Not being due to nonbonded interactions alone, this energy behavior needs to be taken explicitly into account in molecular mechanics force fields. By use of different schemes for calculating potential-derived atomic charges, the charge distribution of NMA was also investigated in connection with the pyramidalization. Large variations in the charges were found as a function of the NH out-of-plane angle. These could not be reproduced only by polarization through the (molecular mechanics) electric field. An enhanced electrostatic model, using geometry-dependent charges (charge fluxes) is shown to provide a satisfactory physical description of this effect.
Keywords
Affiliated Institutions
Related Publications
Derivation of Fixed Partial Charges for Amino Acids Accommodating a Specific Water Model and Implicit Polarization
We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves ite...
<i>Ab initio</i> Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite
The phonon dispersion relations of diamond and graphite are calculated using an ab initio force constant method. The force constants are calculated via a self-consistent superce...
CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model
Abstract A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P‐FQ po...
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
In this study, we present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic pot...
Effects of Charge Localization on the Orbital Energies of Bithiophene Clusters
Standard and constrained density functional theory calculations were used to study the degree of charge localization in positively charged bithiophene clusters. Although polariz...
Publication Info
- Year
- 2003
- Type
- article
- Volume
- 107
- Issue
- 11
- Pages
- 1825-1832
- Citations
- 38
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/jp0219606