Abstract
We present the theory and the implementation of analytical free energy second derivatives with respect to nuclear displacements for a molecular solute described within the framework of the polarizable continuum model. The formulation applies to a cavity with an accurately modeled molecular shape and it permits a complete consideration of all aspects of the solvation model. In particular, the implementation uses the recently proposed method known as the integral equation formalism (IEF), and it can be applied to Hartree–Fock and to density functional calculations. The analysis of both formal and technical features is reported as well as some numerical applications to solvatochromic shifts in IR vibrational frequencies and to transition state searches for reactions in solutions.
Keywords
Affiliated Institutions
Related Publications
Analytical derivatives for molecular solutes. I. Hartree–Fock energy first derivatives with respect to external parameters in the polarizable continuum model
Analytical expressions for the derivatives of the free energy of solution of molecular solutes with respect to the dielectric constant and to a parameter defining the size of th...
Energy and energy derivatives for molecular solutes: Perspectives of application to hybrid quantum and molecular methods
We examine the state of the art of the solvation procedure called the polarizable continuum model (PCM), focusing our attention on the basic properties: energy of the solute, so...
Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation
Abstract We present a simple computational method for the evaluation of solute‐solvent dispersion energy contributions in dilute isotropic solutions, supplementing the method wi...
Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
Starting from the knowledge of first-order changes of wave functions and density with respect to small atomic displacements or infinitesimal homogeneous electric fields within t...
Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation
We present analytical expressions for the first and second energy derivatives of our recently proposed generalized conductorlike screening model (GCOSMO) for free energy of solv...
Publication Info
- Year
- 1999
- Type
- article
- Volume
- 110
- Issue
- 14
- Pages
- 6858-6870
- Citations
- 123
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.478591