Abstract
We study the roughening of a growing surface near to a morphological transition within a general scaling framework. For a class of systems, where the transition can be related to directed percolation, the anomalous roughness at the critical point is at most logarithmical. In two-dimensional simulations we find ${\mathrm{w}}^{2}$\ensuremath{\sim}logL where w is the width of the surface and L is the substrate size.
Keywords
Affiliated Institutions
Related Publications
Diffusion in disordered media
Abstract Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical prop...
Critical Wetting in Three Dimensions
A critical wetting (or interface delocalization) transition occurs when the interface between two fluid phases becomes infinitesimally bound to an attracting wall. It is shown t...
Surface Corrugation in the Dissociative Adsorption of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>on Cu(100)
First-principles calculations of the potential energy surface for ${\mathrm{H}}_{2}$ dissociation on the Cu(100) surface are presented. The height of the transition state above ...
Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal ...
Critical point wetting
It is shown that in any two-phase mixture of fluids near their critical point, contact angles against any third phase become zero in that one of the critical phases completely w...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 62
- Issue
- 22
- Pages
- 2571-2574
- Citations
- 116
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.62.2571