Abstract
Convolutional Neural Networks (CNN) have showed success in achieving translation invariance for many image processing tasks. The success is largely attributed to the use of local filtering and max-pooling in the CNN architecture. In this paper, we propose to apply CNN to speech recognition within the framework of hybrid NN-HMM model. We propose to use local filtering and max-pooling in frequency domain to normalize speaker variance to achieve higher multi-speaker speech recognition performance. In our method, a pair of local filtering layer and max-pooling layer is added at the lowest end of neural network (NN) to normalize spectral variations of speech signals. In our experiments, the proposed CNN architecture is evaluated in a speaker independent speech recognition task using the standard TIMIT data sets. Experimental results show that the proposed CNN method can achieve over 10% relative error reduction in the core TIMIT test sets when comparing with a regular NN using the same number of hidden layers and weights. Our results also show that the best result of the proposed CNN model is better than previously published results on the same TIMIT test sets that use a pre-trained deep NN model.
Keywords
Affiliated Institutions
Related Publications
Global optimization of a neural network-hidden Markov model hybrid
An original method for integrating artificial neural networks (ANN) with hidden Markov models (HMM) is proposed. ANNs are suitable for performing phonetic classification, wherea...
Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
Acoustic models used in hidden Markov model/neural-network (HMM/NN) speech recognition systems are usually trained with a frame-based cross-entropy error criterion. In contrast,...
Deep Belief Networks using discriminative features for phone recognition
Deep Belief Networks (DBNs) are multi-layer generative models. They can be trained to model windows of coefficients extracted from speech and they discover multiple layers of fe...
Auto-encoder bottleneck features using deep belief networks
Neural network (NN) bottleneck (BN) features are typically created by training a NN with a middle bottleneck layer. Recently, an alternative structure was proposed which trains ...
Backpropagation training for multilayer conditional random field based phone recognition
Conditional random fields (CRFs) have recently found increased popularity in automatic speech recognition (ASR) applications. CRFs have previously been shown to be effective com...
Publication Info
- Year
- 2012
- Type
- article
- Pages
- 4277-4280
- Citations
- 885
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/icassp.2012.6288864