Abstract
Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyper parameters: the penalty parameter C and the kernel width σ. This letter analyzes the behavior of the SVM classifier when these hyper parameters take very small or very large values. Our results help in understanding the hyperparameter space that leads to an efficient heuristic method of searching for hyperparameter values with small generalization errors. The analysis also indicates that if complete model selection using the gaussian kernel has been conducted, there is no need to consider linear SVM.
Keywords
Affiliated Institutions
Related Publications
Fast Training of Support Vector Machines Using Sequential Minimal Optimization
This chapter describes a new algorithm for training Support Vector Machines: Sequential Minimal Optimization, or SMO. Training a Support Vector Machine (SVM) requires the soluti...
Kernel Logistic Regression and the Import Vector Machine
The support vector machine (SVM) is known for its good performance in two-class classification, but its extension to multiclass classification is still an ongoing research issue...
Object Detection with Discriminatively Trained Part-Based Models
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-...
Learning Eigenfunctions Links Spectral Embedding and Kernel PCA
In this letter, we show a direct relation between spectral embedding methods and kernel principal components analysis and how both are special cases of a more general learning p...
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion base...
Publication Info
- Year
- 2003
- Type
- article
- Volume
- 15
- Issue
- 7
- Pages
- 1667-1689
- Citations
- 1590
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1162/089976603321891855