Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments

1990 IEEE Transactions on Automatic Control 131 citations

Abstract

A description is given of an asymptotically-minimum-variance algorithm for estimating the MA (moving-average) and ARMA (autoregressive moving-average) parameters of non-Gaussian processes from sample high-order moments. The algorithm uses the statistical properties (covariances and cross covariances) of the sample moments explicitly. A simpler alternative algorithm that requires only linear operations is also presented. The latter algorithm is asymptotically-minimum-variance in the class of weighted least-squares algorithms.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Keywords

MathematicsAutoregressive modelAsymptotically optimal algorithmAutoregressive–moving-average modelGaussianApplied mathematicsVariance (accounting)Estimation theoryAlgorithmStatistics

Affiliated Institutions

Related Publications

Publication Info

Year
1990
Type
article
Volume
35
Issue
1
Pages
27-35
Citations
131
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

131
OpenAlex

Cite This

B. Friedlander, B. Porat (1990). Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments. IEEE Transactions on Automatic Control , 35 (1) , 27-35. https://doi.org/10.1109/9.45140

Identifiers

DOI
10.1109/9.45140