Abstract
Born-Mayer parameters are given which permit, with good accuracy (to within 6%), a greatly simplified computation of a previously derived interatomic potential, $U(R)$, based on the Thomas-Fermi-Dirac (TFD) approximation. The numerical values of $A$ and $b$ appearing in $U(R)=A \mathrm{exp}(\ensuremath{-}bR)$ are tabulated in two sets of commonly used units for 104 homonuclear pairs of neutral ground-state atoms having $Z=2$ to $Z=105$. Approximate lower and upper limits of applicability, ${R}_{l}$ and ${R}_{u}$, are also listed, as is the magnitude of the maximum percent error ($\ensuremath{\epsilon}$) for each fit. ${R}_{l}$ is generally $\ensuremath{\sim}1.5{a}_{0}({a}_{0}=0.52917 \AA{})$, while ${R}_{u}\ensuremath{\sim}3.5{a}_{0}$. The effective upper limit probably lies at $\ensuremath{\sim}6\ensuremath{-}8{a}_{0}$. Also, with the aid of the given table and the combining rule ${U}_{12}\ensuremath{\simeq}{({U}_{11}{U}_{22})}^{\frac{1}{2}}$, the interaction energies of a total of 5356 heteronuclear diatoms can readily be obtained.
Keywords
Affiliated Institutions
Related Publications
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>pair production at supercollider energies
We present the invariant-mass distributions for the production of ${Z}^{0}$${Z}^{0}$ pairs by ${W}^{+}$${W}^{\mathrm{\ensuremath{-}}}$ and ${Z}^{0}$${Z}^{0}$ fusion at 40 TeV. R...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Domain Structure of Rochelle Salt and K<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>P<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
It has been verified by means of the polarization microscope that rochelle salt in the ferroelectric state consists of many domains. The domain structure in an annealed crystal ...
Repulsive Interaction Potentials between Rare-Gas Atoms. Heteronuclear Two-Center Systems
A theoretical expression, previously applied only to homonuclear pairs of rare-gas atoms, has been used to calculate the interaction energies $U(R)$ for the corresponding hetero...
Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">r</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>exchange
A set of Jastrow wave functions comprises exact eigenstates of a family of S= $\frac{1}{2}$ antiferromagnetic chains with ${\mathrm{r}}^{\mathrm{\ensuremath{-}}2}$ exchange. The...
Publication Info
- Year
- 1969
- Type
- article
- Volume
- 178
- Issue
- 1
- Pages
- 76-79
- Citations
- 337
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.178.76