Abstract
A relay channel consists of an input <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x_{l}</tex> , a relay output <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y_{1}</tex> , a channel output <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</tex> , and a relay sender <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x_{2}</tex> (whose transmission is allowed to depend on the past symbols <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y_{1}</tex> . The dependence of the received symbols upon the inputs is given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p(y,y_{1}|x_{1},x_{2})</tex> . The channel is assumed to be memoryless. In this paper the following capacity theorems are proved. 1)If <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</tex> is a degraded form of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y_{1}</tex> , then <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C \: = \: \max \!_{p(x_{1},x_{2})} \min \,{I(X_{1},X_{2};Y), I(X_{1}; Y_{1}|X_{2})}</tex> . 2)If <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y_{1}</tex> is a degraded form of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</tex> , then <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C \: = \: \max \!_{p(x_{1})} \max_{x_{2}} I(X_{1};Y|x_{2})</tex> . 3)If <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p(y,y_{1}|x_{1},x_{2})</tex> is an arbitrary relay channel with feedback from <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(y,y_{1})</tex> to both <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x_{1} \and x_{2}</tex> , then <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C\: = \: \max_{p(x_{1},x_{2})} \min \,{I(X_{1},X_{2};Y),I \,(X_{1};Y,Y_{1}|X_{2})}</tex> . 4)For a general relay channel, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C \: \leq \: \max_{p(x_{1},x_{2})} \min \,{I \,(X_{1}, X_{2};Y),I(X_{1};Y,Y_{1}|X_{2})</tex> . Superposition block Markov encoding is used to show achievability of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</tex> , and converses are established. The capacities of the Gaussian relay channel and certain discrete relay channels are evaluated. Finally, an achievable lower bound to the capacity of the general relay channel is established.
Keywords
Affiliated Institutions
Related Publications
Achievable rates for multiple descriptions
Consider a sequence of independent identically distributed (i.i.d.) random variables <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlin...
Noiseless coding of correlated information sources
Correlated information sequences <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\cdots ,X_{-1},X_0,X_1, \cdots</tex> and <tex xml...
Fast evaluation of logarithms in fields of characteristic two
A method for determining logarithms in GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(2^{n})</tex> is presented. Its asymptot...
An improved algorithm for computing logarithms overGF(p)and its cryptographic significance (Corresp.)
A cryptographic system is described which is secure if and only if computing logarithms over <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1...
A subexponential-time algorithm for computing discrete logarithms overGF(p^2)
An algorithm for computing discrete logarithms over GF <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(p^{2})</tex> , where <tex ...
Publication Info
- Year
- 1979
- Type
- article
- Volume
- 25
- Issue
- 5
- Pages
- 572-584
- Citations
- 4160
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tit.1979.1056084