Abstract
The most commonly used electrode materials for electrochemical capacitors are activated carbons, because they are commercially available and cheap, and they can be produced with large specific surface area. However, only the electrochemically available surface area is useful for charging the electrical double layer (EDL). The EDL formation is especially efficient in carbon pores of size below 1 nm because of the lack of space charge and a good attraction of ions along the pore walls. The pore size should ideally match the size of the ions. However, for good dynamic charge propagation, some small mesopores are useful. An asymmetric configuration, where the positive and negative electrodes are constructed from different materials, e.g., activated carbon, transition metal oxide or conducting polymer, is of great interest because of an important extension of the operating voltage. In such a case, the energy as well as power is greatly increased. It appears that nanotubes are a perfect conducting additive and/or support for materials with pseudocapacitance properties, e.g. MnO(2), conducting polymers. Substitutional heteroatoms in the carbon network (nitrogen, oxygen) are a promising way to enhance the capacitance. Carbons obtained by one-step pyrolysis of organic precursors rich in heteroatoms (nitrogen and/or oxygen) are very interesting, because they are denser than activated carbons. The application of a novel type of electrolyte with a broad voltage window (ionic liquids) is considered, but the stability of this new generation of electrolyte during long term cycling of capacitors is not yet confirmed.
Keywords
Affiliated Institutions
Related Publications
High power electrochemical capacitors based on carbon nanotube electrodes
Carbon nanotube sheet electrodes have been prepared from catalytically grown carbon nanotubes of high purity and narrow diameter distribution, centered around 80 Å. Our study sh...
Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks
Abstract Two‐dimensional (2D) nanosheets, which possess atomic or molecular thickness and infinite planar lengths, are regarded as the thinnest functional nanomaterials. The rec...
Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells
Hybrid composites of semiconducting polymers and metal oxides are promising combinations for solar cells. However, forming a well-controlled nanostructure with bicontinuous inte...
Electrical impedance measurements of polymer light-emitting diodes
We report electrical impedance measurements of polymer light-emitting diodes employing the soluble, conjugated polymer poly[2-methoxy, 5-(2′-ethyl-hexyloxy)-1,4-phenylene vinyle...
Fast Li⊕ Conducting Ceramic Electrolytes
The all‐solid, lithium rechargeable battery , which if available would find many applications, is one reason for carrying out research into Li⊕‐conducting solids. Fast Li⊕‐condu...
Publication Info
- Year
- 2007
- Type
- review
- Volume
- 9
- Issue
- 15
- Pages
- 1774-1774
- Citations
- 1983
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1039/b618139m