Abstract
A variety of possible chemisorption models has been investigated for the K/Si(001)2×1 interface by use of the local-density formalism and the discrete variational method to carry out self-consistent total-energy calculations with Hedin and Lundqvist exchange correlation. Cluster models with up to 89 atoms are adopted to simulate various chemisorption sites. Electronic structures, charge distributions, and bonding characteristics are studied and discussed. The binding energy and relative stability are determined with a total-energy approach. It turns out that the most stable site predicted the cave site has been ignored previously in both theoretical calculations and experimental analyses. However, it is the site towards which dangling bonds of the two nearest surface Si atoms are directed and looks to be a reasonable feature for chemisorption. The resulting K-Si bond length (3.22 A) is in good agreement with the latest surface extended x-ray-absorption fine-structure experimental value. A charge of about 0.5e per K atom is transferred from the K atom to the surface, indicating that a mixed type of bonding occurs. Moreover, for monolayer adsorption, a potassium chain formed on the surface tends to undergo a small zigzag Peierls-like deformation to form a lower-energy state.
Keywords
Affiliated Institutions
Related Publications
Adsorption of Cu and Ag atoms on Si(111) surfaces: Local density functional determination of geometries and electronic structures
The electronic structures, adsorption geometries, chemisorption energies, and vibrational frequencies of single Cu and Ag atoms on Si(111) surfaces are determined by self-consis...
Charge separation and covalent bonding in metal oxide surfaces: A local density functional study on the MgO(001) surface
A first principles local density functional investigation on extended, two-dimensional periodic slab models of the MgO(001) surface is performed, using the linear combination of...
A Gibbs free energy correlation for automated docking of carbohydrates
Abstract Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding...
Dissecting protein–protein recognition sites
Abstract The recognition sites in 70 pairwise protein–protein complexes of known three‐dimensional structure are dissected in a set of surface patches by clustering atoms at the...
CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations
Abstract A first‐generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic har...
Publication Info
- Year
- 1989
- Type
- article
- Volume
- 39
- Issue
- 14
- Pages
- 10144-10153
- Citations
- 149
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.39.10144