Abstract
BIOPHYSICAL BASIS O F FLUORESCENCE EMISSION FROM CHLOROPLASTS . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 314 Fluorescence as a Reaction Competing in the Deactivation of Excited Chlorophyll . . . . . . . . . . ... . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Lifetimes of Fluorescence . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 317 Origin of Fluorescence Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1 Fluorescence of PS 11 and PS I at Ambient and Low Temperatures . . . . . . . . . . . . . . . . . . . 323 FLUORESCENCE INDUCTION AND PS II HETEROGENEITy 325 Fluorescence Transient from Fo to FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 The FI Level and Inactive PS11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... . .. . . . .. . . . . . . . . . 326 Fluorescence Induction in High Ught .. . . . . . . . . 327 Rise in the Presence of DCMU and a/{3 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 FLUORESCENCE QUENCHING 329 Resolution of Quenching Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ........ . .. . . . . . . . . . . . . . . 330 Mechanism of Energy·Dependent Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 Quenching Related t o State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . ......... . . .. .. . . . . . . . 334 Photoinhibitory Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Further Quenching Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Physiological Aspects of Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 338 CONCLUSIONS AND PERSPECTiVES 341
Keywords
Related Publications
Plant functional types as predictors of transient responses of arctic vegetation to global change
Abstract. The plant functional types (growth forms) traditionally recognized by arctic ecologists provide a useful framework for predicting vegetation responses to, and effects ...
Increased atmospheric vapor pressure deficit reduces global vegetation growth
Global vegetation greening trend stalled after the late 1990s due to increased atmospheric water demand.
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, qual...
Publication Info
- Year
- 1991
- Type
- article
- Volume
- 42
- Issue
- 1
- Pages
- 313-349
- Citations
- 4114
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1146/annurev.pp.42.060191.001525