CLIC readiness report

E. Adli , G. D’Auria , Nuria Catalán Lasheras , E. Adli , G. D’Auria , Nuria Catalán Lasheras , S. Doebert , Michael Draper , A. Faus‐Golfe , Edward Mactavish , Alexej Grudiev , A. Latina , John A. Osborne , Y. Papaphilippou , A. Robson , C. Rossi , Daniel Schulte , S. Stapnes , Rogelio Tomás , K. Abe , H. Abramowicz , C. Adolphsen , D. Aguglia , A. Ahmad , Markus Aicheler , B. Aimard , Avni Aksoy , D. Alesini , T. Alexopoulos , Mohammed Y. Ali , N. Alipour Tehrani , F. Andrianala , Fanouria Antoniou , R. Apsimon , D. Arominski , Kurt Artoos , A. Aryshev , S. Atieh , Carlo Baccigalupi , Ekaterina Baibuz , I. Bailey , Alex Bainbridge , Csaba Balázs , G. Balik , R. Ballabriga Sune , P. Bambade , D. Banon Caballero , T. Barklow , Michael Barnes , M. Bellaveglia , Carolina Belver-Aguilar , Gabriele Benedetti , Y. Benhammou , A. Bernhard , Douglas Bett , C. Blanch Gutierrez , O. Blanco Garcia , Neven Blaskovic Kraljevic , Lorraine Bobb , Ryan Bodenstein , Mark Boland , Stewart Boogert , G. Boorman , M. Bopp , M. Boronat , A. Bosco , I. Božović-Jelisavc̆ić , D. Bozzini , E. Brücken , P. A. Bruckman de Renstrom , Erik Bründermann , Hans-Heinrich Braun , L. Brunetti , O. Brunner , B. Buonomo , H. Burkhardt , P.N. Burrows , Hikmet Bursali , S. Calatroni , M. Campbell , M.H. Capstick , A. Cardelli , B. Cassany , E. Castro , M. Chefdeville , R. Chehab , H. Chen , Jun Chen , G. Chen , Ahmed Chérif , James Clarke , M. Coman , R. Costa , P. Craievich , B. Curé , S. Curt , Y. Cuvet , D. Dannheim , M. Davier , M. K. Dayyani , Alberto Degiovanni , M. Dehler , Jean‐Pierre Delahaye
2025 The European Physical Journal Special Topics 0 citations

Abstract

Abstract The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e + e − collider studied by the international CLIC and CLICdp collaborations hosted by CERN. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages. The initial stage will have a centre-of-mass energy of 380 GeV, with a site length of 11 km. The 380 GeV stage optimally combines the exploration of Higgs and top-quark physics, including a top threshold scan near 350 GeV. A higher-energy stage, still using the initial single drive-beam complex, can be optimised for any energy up to 2 TeV. Parameters are presented in detail for a 1.5 TeV stage, with a site length of 29 km. Since the 2018 ESPPU reporting, significant effort was invested in CLIC accelerator optimisation, technology developments and system tests, including collaboration with and gaining experience from new-generation light sources and free-electron lasers. CLIC implementation aspects at CERN have covered detailed studies of civil engineering, electrical networks, cooling and ventilation, scheduling, and costing. The CLIC baseline at 380 GeV is now 100 Hz operation, with a luminosity of 4.5 $\times 10^{34}\text{ cm}^{-2}\text{s}^{-1}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>34</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mtext> cm</mml:mtext> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mtext>s</mml:mtext> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> and a power consumption of 166 MW. Compared to the 2018 design, this gives three times higher luminosity-per-power. The new baseline has two beam-delivery systems, allowing for two detectors operating in parallel, sharing the luminosity. The cost estimate of the 380 GeV baseline is approximately 7.2 billion CHF. The construction of the first CLIC energy stage could start as early as ∼2034-2035 and beam commissioning and first beams would follow a decade later, marking the beginning of a physics programme spanning 20-30 years and providing excellent sensitivity to Beyond Standard Model physics, through direct searches and via a broad set of precision measurements of Standard Model processes, particularly in the Higgs and top-quark sectors. This report summarises the CLIC project, its implementation and running scenarios, with emphasis on new developments and recent progress. It concludes with an update on the CLIC detector studies and on the physics potential in light of the improved accelerator performance. The physics potential includes results from the 3 TeV energy stage, which was studied in detail for the CLIC CDR in 2012 and the CLIC Project Implementation Plan of 2018.

Related Publications

Combination of Tevatron Searches for the Standard Model Higgs Boson in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>W</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>W</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>Decay Mode

We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) o...

2010 Physical Review Letters 146 citations

Publication Info

Year
2025
Type
article
Citations
0
Access
Closed

External Links

Social Impact

Altmetric
PlumX Metrics

Social media, news, blog, policy document mentions

Citation Metrics

0
OpenAlex

Cite This

E. Adli, G. D’Auria, Nuria Catalán Lasheras et al. (2025). CLIC readiness report. The European Physical Journal Special Topics . https://doi.org/10.1140/epjs/s11734-025-02016-w

Identifiers

DOI
10.1140/epjs/s11734-025-02016-w