Abstract
We present an implementation of Maxwell's equations on adaptive meshes in order to study interaction of light with metal surfaces. For the first time it is possible to handle surfaces consisting of complex particles close enough to interact strongly. A fully retarded implementation allows treatment of large particles as well as small. By way of example we model a rough silver surface as an array of half-cylinders embedded in a silver surface. Very localized plasmon modes, created by strong electromagnetic coupling between touching metallic objects, dominate the surface enhanced Raman scattering response.
Keywords
Affiliated Institutions
Related Publications
Surface-enhanced Raman scattering on gold and aluminum particle arrays
The intensity and excitation wavelength dependence of the surface-enhanced Raman effect is measured on microlithographically prepared gold and aluminum particle surfaces. Compar...
Surface-enhanced Raman scattering
On the basis of different types of experiments, the authors develop implicitly the model of surface-enhanced Raman scattering (SERS) of adsorbates on metal surfaces. The long-ra...
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment
The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. Mor...
Surface-enhanced spectroscopy
In 1978 it was discovered, largely through the work of Fleischmann, Van Duyne, Creighton, and their coworkers that molecules adsorbed on specially prepared silver surfaces produ...
Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces
A theory for surface enhanced Raman scattering (SERS) is developed. Effects due to realistic surface geometry and dielectric properties are included. Three sources of enhanced R...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 77
- Issue
- 6
- Pages
- 1163-1166
- Citations
- 851
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.77.1163