Abstract

Abstract The benefit of integrating batches of genomic data to increase statistical power is often hindered by batch effects, or unwanted variation in data caused by differences in technical factors across batches. It is therefore critical to effectively address batch effects in genomic data to overcome these challenges. Many existing methods for batch effects adjustment assume the data follow a continuous, bell-shaped Gaussian distribution. However in RNA-seq studies the data are typically skewed, over-dispersed counts, so this assumption is not appropriate and may lead to erroneous results. Negative binomial regression models have been used previously to better capture the properties of counts. We developed a batch correction method, ComBat-seq, using a negative binomial regression model that retains the integer nature of count data in RNA-seq studies, making the batch adjusted data compatible with common differential expression software packages that require integer counts. We show in realistic simulations that the ComBat-seq adjusted data results in better statistical power and control of false positives in differential expression compared to data adjusted by the other available methods. We further demonstrated in a real data example that ComBat-seq successfully removes batch effects and recovers the biological signal in the data.

Keywords

RNA-SeqCount dataComputer scienceBiologyStatisticsMathematicsTranscriptomeGeneGenetics

Affiliated Institutions

Related Publications

Publication Info

Year
2020
Type
article
Volume
2
Issue
3
Pages
lqaa078-lqaa078
Citations
1486
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1486
OpenAlex
81
Influential
1144
CrossRef

Cite This

Yuqing Zhang, Giovanni Parmigiani, W. Evan Johnson (2020). ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genomics and Bioinformatics , 2 (3) , lqaa078-lqaa078. https://doi.org/10.1093/nargab/lqaa078

Identifiers

DOI
10.1093/nargab/lqaa078
PMID
33015620
PMCID
PMC7518324

Data Quality

Data completeness: 86%