Keywords

Critical exponentStatistical physicsPerturbation theory (quantum mechanics)Perturbation (astronomy)Critical phenomenaMathematicsPoincaré–Lindstedt methodPhysicsMathematical physicsPhase transitionQuantum mechanics

Affiliated Institutions

Related Publications

Mean-field phase diagram of a two-band<i>t</i>-<i>J</i>model for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>layers

We study the mean-field phase diagram of a two-band t-J model. Upon varying the doping and the values of the parameters, we identify solutions with different magnetic structure ...

1991 Physical review. B, Condensed matter 33 citations

Universal relations among critical amplitude. Calculations up to order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>for systems with continuous symmetry

A general derivation of the two-scale-factor universality is given using the renormalized ${\ensuremath{\varphi}}^{4}$ theory. As a consequence ten universal relations among cri...

1976 Physical review. B, Solid state 147 citations

Publication Info

Year
1978
Type
article
Volume
19
Issue
3
Pages
269-292
Citations
125
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

125
OpenAlex

Cite This

E. Br�zin, Giorgio Parisi (1978). Critical exponents and large-order behavior of perturbation theory. Journal of Statistical Physics , 19 (3) , 269-292. https://doi.org/10.1007/bf01011726

Identifiers

DOI
10.1007/bf01011726