Abstract
The partition function of a two-dimensional "ferromagnetic" with scalar "spins" (Ising model) is computed rigorously for the case of vanishing field. The eigenwert problem involved in the corresponding computation for a long strip crystal of finite width ($n$ atoms), joined straight to itself around a cylinder, is solved by direct product decomposition; in the special case $n=\ensuremath{\infty}$ an integral replaces a sum. The choice of different interaction energies ($\ifmmode\pm\else\textpm\fi{}J,\ifmmode\pm\else\textpm\fi{}{J}^{\ensuremath{'}}$) in the (0 1) and (1 0) directions does not complicate the problem. The two-way infinite crystal has an order-disorder transition at a temperature $T={T}_{c}$ given by the condition $sinh(\frac{2J}{k{T}_{c}}) sinh(\frac{2{J}^{\ensuremath{'}}}{k{T}_{c}})=1.$ The energy is a continuous function of $T$; but the specific heat becomes infinite as $\ensuremath{-}log |T\ensuremath{-}{T}_{c}|$. For strips of finite width, the maximum of the specific heat increases linearly with $log n$. The order-converting dual transformation invented by Kramers and Wannier effects a simple automorphism of the basis of the quaternion algebra which is natural to the problem in hand. In addition to the thermodynamic properties of the massive crystal, the free energy of a (0 1) boundary between areas of opposite order is computed; on this basis the mean ordered length of a strip crystal is ${(\mathrm{exp} (\frac{2J}{\mathrm{kT}}) tanh(\frac{2{J}^{\ensuremath{'}}}{\mathrm{kT}}))}^{n}.$
Keywords
Affiliated Institutions
Related Publications
Example of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>-Decay in Flight
A ${\ensuremath{\tau}}^{+}$-meson, of 0.83 Bev/c, is observed to undergo normal decay in flight with $Q(3\ensuremath{\pi})=73.9\ifmmode\pm\else\textpm\fi{}5.8$ Mev. The center-o...
Evolution of cosmological baryon asymmetries. I. The role of gauge bosons
The time evolution of the baryon asymmetry ($\frac{k{n}_{B}}{s}$) due to the interactions of a superheavy gauge boson (mass ${M}_{X}\ensuremath{\sim}{10}^{15}$ GeV, coupling str...
Evolution of cosmological baryon asymmetries. II. The role of Higgs bosons
The time evolution of the baryon asymmetry of the universe due to superheavy Higgs bosons is obtained by integrating the Boltzmann equations. The interactions included are decay...
Thermal Conductivity of He I Near the Superfluid Transition
The thermal conductivity of HeI was measured at saturated vapor pressure from ${10}^{\ensuremath{-}7}$ \ifmmode^\circ\else\textdegree\fi{}K to 5 \ifmmode\times\else\texttimes\fi...
Band structure and its temperature dependence for type-III<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi><mml:mi mathvariant="normal">T</mml:mi><mml:mi mathvariant="normal">e</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">H</mml:mi><mml:mi mathvariant="normal">g</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Cd</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Te</mml:mi></mml:math>superlattices and their semimetal constituent
Intersubband transitions in ${\mathrm{H}\mathrm{g}\mathrm{T}\mathrm{e}/\mathrm{H}\mathrm{g}}_{1\ensuremath{-}x}{\mathrm{Cd}}_{x}\mathrm{Te}$ superlattices and their dependence o...
Publication Info
- Year
- 1944
- Type
- article
- Volume
- 65
- Issue
- 3-4
- Pages
- 117-149
- Citations
- 6303
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.65.117