Abstract
Agrivoltaic systems (AVS) are gaining global attention as an innovative solution to simultaneously address food, water, and energy security challenges. However, the effective design and management of these dual-use systems hinge on a comprehensive understanding of their microclimatic impacts. This systematic review critically analyzes the current literature on AVS microclimates, focusing on key atmospheric (air temperature, relative humidity, wind speed), radiation (Photosynthetically Active Radiation—PAR, global radiation, shading rate), and soil parameters (temperature, moisture). Results indicate that while reduced soil temperature and enhanced moisture retention are consistent and agronomically significant benefits, the effects on air temperature are highly variable. These often demonstrate site-specific warming or pronounced vertical thermal stratification. Furthermore, AVS significantly alters light availability, with PAR reduction ranging from 5% to 94%, emphasizing the system’s inherent spatial and temporal heterogeneity. A major gap identified is the lack of standardized measurement methodologies, limiting data comparability. To address this, we propose a “Minimum Viable Monitoring” (MVM) framework, advocating for multi-zone and multi-height sensor placement to accurately capture microclimatic variability. These findings highlight that the observed heterogeneity, rather than a limitation, presents a unique opportunity for precision agriculture and zoned management strategies.
Affiliated Institutions
Related Publications
Radiation Resistant Camera System for Monitoring Deuterium Plasma Discharges in the Large Helical Device
Radiation resistant camera system was constructed for monitoring deuterium plasma discharges in the Large Helical Device (LHD). This system has contributed to safe operation dur...
PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT
Since 1922 when Wu proposed the use of the Folin phenol reagent for the measurement of proteins (l), a number of modified analytical procedures ut.ilizing this reagent have been...
Publication Info
- Year
- 2025
- Type
- article
- Volume
- 15
- Issue
- 12
- Pages
- 2829-2829
- Citations
- 0
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.3390/agronomy15122829