Abstract
Abstract Deactivation refers to increased neural activity during low-demand tasks or rest compared with high-demand tasks. Several groups have reported that a particular set of brain regions, including the posterior cingulate cortex and the medial prefrontal cortex, among others, is consistently deactivated. Taken together, these typically deactivated brain regions appear to constitute a default-mode network of brain activity that predominates in the absence of a demanding external task. Examining a passive, block-design sensory task with a standard deactivation analysis (rest epochs vs. stimulus epochs), we demonstrate that the default-mode network is undetectable in one run and only partially detectable in a second run. Using independent component analysis, however, we were able to detect the full default-mode network in both runs and to demonstrate that, in the majority of subjects, it persisted across both rest and stimulus epochs, uncoupled from the task waveform, and so mostly undetectable as deactivation. We also replicate an earlier finding that the default-mode network includes the hippocampus suggesting that episodic memory is incorporated in default-mode cognitive processing. Furthermore, we show that the more a subject's default-mode activity was correlated with the rest epochs (and “deactivated” during stimulus epochs), the greater that subject's activation to the visual and auditory stimuli. We conclude that activity in the default-mode network may persist through both experimental and rest epochs if the experiment is not sufficiently challenging. Time-series analysis of default-mode activity provides a measure of the degree to which a task engages a subject and whether it is sufficient to interrupt the processes—presumably cognitive, internally generated, and involving episodic memory—mediated by the default-mode network.
Keywords
Affiliated Institutions
Related Publications
<i>The Brain's Default Network</i>
Thirty years of brain imaging research has converged to define the brain's default network—a novel and only recently appreciated brain system that participates in internal modes...
Spontaneous Low-Frequency Fluctuations in the BOLD Signal in Schizophrenic Patients: Anomalies in the Default Network
Spontaneous low-frequency fluctuations in the blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (MRI) signal have been shown to reflect neural synchrony ...
Conceptual Processing during the Conscious Resting State: A Functional MRI Study
Abstract Localized, task-induced decreases in cerebral blood flow are a frequent finding in functional brain imaging research but remain poorly understood. One account of these ...
Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory
Alzheimer's disease (AD) and antecedent factors associated with AD were explored using amyloid imaging and unbiased measures of longitudinal atrophy in combination with reanalys...
Functional Anatomic Studies of Memory Retrieval for Auditory Words and Visual Pictures
Functional neuroimaging with positron emission tomography was used to study brain areas activated during memory retrieval. Subjects ( n = 15) recalled items from a recent study ...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 16
- Issue
- 9
- Pages
- 1484-1492
- Citations
- 693
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1162/0898929042568532