Abstract
Recent functional imaging studies have revealed coactivation in a distributed network of cortical regions that characterizes the resting state, or default mode, of the human brain. Among the brain regions implicated in this network, several, including the posterior cingulate cortex and inferior parietal lobes, have also shown decreased metabolism early in the course of Alzheimer's disease (AD). We reasoned that default-mode network activity might therefore be abnormal in AD. To test this hypothesis, we used independent component analysis to isolate the network in a group of 13 subjects with mild AD and in a group of 13 age-matched elderly controls as they performed a simple sensory-motor processing task. Three important findings are reported. Prominent coactivation of the hippocampus, detected in all groups, suggests that the default-mode network is closely involved with episodic memory processing. The AD group showed decreased resting-state activity in the posterior cingulate and hippocampus, suggesting that disrupted connectivity between these two regions accounts for the posterior cingulate hypometabolism commonly detected in positron emission tomography studies of early AD. Finally, a goodness-of-fit analysis applied at the individual subject level suggests that activity in the default-mode network may ultimately prove a sensitive and specific biomarker for incipient AD.
Keywords
Affiliated Institutions
Related Publications
Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory
Alzheimer's disease (AD) and antecedent factors associated with AD were explored using amyloid imaging and unbiased measures of longitudinal atrophy in combination with reanalys...
Spontaneous Low-Frequency Fluctuations in the BOLD Signal in Schizophrenic Patients: Anomalies in the Default Network
Spontaneous low-frequency fluctuations in the blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (MRI) signal have been shown to reflect neural synchrony ...
<i>The Brain's Default Network</i>
Thirty years of brain imaging research has converged to define the brain's default network—a novel and only recently appreciated brain system that participates in internal modes...
Functional connectivity in the motor cortex of resting human brain using echo‐planar mri
Abstract An MRI time course of 512 echo‐planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physi...
Remembering the past: two facets of episodic memory explored with positron emission tomography
These results indicate that free-ranging mental activity (random episodic memory) produces large activations in association cortex and may reflect both active retrieval of past ...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 101
- Issue
- 13
- Pages
- 4637-4642
- Citations
- 3652
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1073/pnas.0308627101