Abstract
Glass's estimator of effect size, the sample mean difference divided by the sample standard deviation, is studied in the context of an explicit statistical model. The exact distribution of Glass's estimator is obtained and the estimator is shown to have a small sample bias. The minimum variance unbiased estimator is obtained and shown to have uniformly smaller variance than Glass's (biased) estimator. Measurement error is shown to attenuate estimates of effect size and a correction is given. The effects of measurement invalidity are discussed. Expressions for weights that yield the most precise weighted estimate of effect size are also derived.
Keywords
Affiliated Institutions
Related Publications
Estimating Mean and Standard Deviation from the Sample Size, Three Quartiles, Minimum, and Maximum
Background: We sometimes want to include in a meta-analysis data from studies where results are presented as medians and ranges or interquartile ranges rather than as means and ...
Some Observations on Robust Estimation
Abstract Let Tj be a reasonable estimator (for example, a minimum mean square error estimator) of the parameter θ of the family Dj of distributions, j = 1, 2, …, m. An estimator...
Bootstrap Methods: Another Look at the Jackknife
We discuss the following problem: given a random sample $\\mathbf{X} = (X_1, X_2, \\cdots, X_n)$ from an unknown probability distribution $F$, estimate the sampling distribution...
How Much Should We Trust Differences-In-Differences Estimates?
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors...
On the Smoothing of Probability Density Functions
Summary We consider the estimation of a probability density function by linear smoothing of the observed density. A basis for estimation is obtained by assuming that the ordinat...
Publication Info
- Year
- 1981
- Type
- article
- Volume
- 6
- Issue
- 2
- Pages
- 107-128
- Citations
- 4587
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.3102/10769986006002107