Abstract
The construction and implementation of a Gibbs sampler for efficient simulation from the truncated multivariate normal and Student-t distributions is described. It is shown how the accuracy and convergence of integrals based on the Gibbs sample may be constructed, and how an estimate of the probability of the constraint set under the unrestricted distribution may be produced. Keywords: Bayesian inference; Gibbs sampler; Monte Carlo; multiple integration; truncated normal This paper was prepared for a presentation at the meeting Computing Science and Statistics: the Twenty-Third Symposium on the Interface, Seattle, April 22-24, 1991. Research assistance from Zhenyu Wang and financial support from National Science Foundation Grant SES-8908365 are gratefully acknowledged. The software for the examples may be requested by electronic mail, and will be returned by that medium. 2 1. Introduction The generation of random samples from a truncated multivariate normal distribution, that is, a ...
Keywords
Affiliated Institutions
Related Publications
Inference from Iterative Simulation Using Multiple Sequences
The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, ho...
Sampling-Based Approaches to Calculating Marginal Densities
Abstract Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative sampling- (or Monte Carlo-) based approa...
A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling
Abstract A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal errors and nonlinear functionals i...
Gibbs Sampling for Bayesian Non-Conjugate and Hierarchical Models by Using Auxiliary Variables
Summary We demonstrate the use of auxiliary (or latent) variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate and hi...
Understanding the Metropolis-Hastings Algorithm
Abstract We provide a detailed, introductory exposition of the Metropolis-Hastings algorithm, a powerful Markov chain method to simulate multivariate distributions. A simple, in...
Publication Info
- Year
- 1991
- Type
- article
- Citations
- 557
- Access
- Closed