Electron densities in search of Hamiltonians

Mel Levy Mel Levy
1982 Physical review. A, General physics 670 citations

Abstract

By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state density, the following fundamental connections between densities and Hamiltonians are revealed: Given that ${\ensuremath{\rho}}_{\ensuremath{\alpha}}, {\ensuremath{\rho}}_{\ensuremath{\beta}},\dots{},{\ensuremath{\rho}}_{\ensuremath{\omega}}$ are ground-level densities for interacting or noninteracting Hamiltonians ${H}_{1}, {H}_{2},\dots{},{H}_{M}$ ($M$ arbitrarily large) with local potentials ${v}_{1}$,${v}_{2}$,$\dots{}$,${v}_{M}$, but given that we do not know which $\ensuremath{\rho}$ belongs with which $H$, the correct mapping is possible and is obtained by minimizing $\ensuremath{\int}d\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}} [{v}_{1}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\alpha}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+{v}_{2}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\beta}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+\ensuremath{\cdots}{v}_{M}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\omega}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})]$ with respect to optimum permutations of the $\ensuremath{\rho}$'s among the $v$'s. A tight rigorous bound connects a density to its interacting ground-state energy via the one-body potential of the interacting system and the Kohn-Sham effective one-body potential of the auxiliary noninteracting system. A modified Kohn-Sham effective potential is defined such that its sum of lowest orbital energies equals the true interacting ground-state energy. Moreover, of all those effective potentials which differ by additive constants and which yield the true interacting ground-state density, this modified effective potential is the most invariant with respect to changes in the one-body potential of the true Hamiltonian. With the exception of the occurrence of certain linear dependencies, $a$ density will not generally be associated with any ground-state wave function (is not wave function $v$ representable) if that density can be generated by a special linear combination of three or more densities that arise from a common set of degenerate ground-state wave functions. Applicability of the "constrained search" approach to density-functional theory is emphasized for non-$v$-representable as well as for $v$-representable densities. In fact, a particular constrained ensemble search is revealed which provides a general sufficient condition for non-$v$ representability by a wave function. The possible appearance of noninteger occupation numbers is discussed in connection with the existence of non-$v$ representability for some Kohn-Sham noninteracting systems.

Keywords

PhysicsGround stateOmegaHamiltonian (control theory)Energy (signal processing)Quantum mechanicsMathematical physicsCombinatoricsAtomic physicsMathematics

Affiliated Institutions

Related Publications

Publication Info

Year
1982
Type
article
Volume
26
Issue
3
Pages
1200-1208
Citations
670
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

670
OpenAlex

Cite This

Mel Levy (1982). Electron densities in search of Hamiltonians. Physical review. A, General physics , 26 (3) , 1200-1208. https://doi.org/10.1103/physreva.26.1200

Identifiers

DOI
10.1103/physreva.26.1200