Abstract
By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state density, the following fundamental connections between densities and Hamiltonians are revealed: Given that ${\ensuremath{\rho}}_{\ensuremath{\alpha}}, {\ensuremath{\rho}}_{\ensuremath{\beta}},\dots{},{\ensuremath{\rho}}_{\ensuremath{\omega}}$ are ground-level densities for interacting or noninteracting Hamiltonians ${H}_{1}, {H}_{2},\dots{},{H}_{M}$ ($M$ arbitrarily large) with local potentials ${v}_{1}$,${v}_{2}$,$\dots{}$,${v}_{M}$, but given that we do not know which $\ensuremath{\rho}$ belongs with which $H$, the correct mapping is possible and is obtained by minimizing $\ensuremath{\int}d\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}} [{v}_{1}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\alpha}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+{v}_{2}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\beta}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})+\ensuremath{\cdots}{v}_{M}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}}){\ensuremath{\rho}}_{\ensuremath{\omega}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{r}})]$ with respect to optimum permutations of the $\ensuremath{\rho}$'s among the $v$'s. A tight rigorous bound connects a density to its interacting ground-state energy via the one-body potential of the interacting system and the Kohn-Sham effective one-body potential of the auxiliary noninteracting system. A modified Kohn-Sham effective potential is defined such that its sum of lowest orbital energies equals the true interacting ground-state energy. Moreover, of all those effective potentials which differ by additive constants and which yield the true interacting ground-state density, this modified effective potential is the most invariant with respect to changes in the one-body potential of the true Hamiltonian. With the exception of the occurrence of certain linear dependencies, $a$ density will not generally be associated with any ground-state wave function (is not wave function $v$ representable) if that density can be generated by a special linear combination of three or more densities that arise from a common set of degenerate ground-state wave functions. Applicability of the "constrained search" approach to density-functional theory is emphasized for non-$v$-representable as well as for $v$-representable densities. In fact, a particular constrained ensemble search is revealed which provides a general sufficient condition for non-$v$ representability by a wave function. The possible appearance of noninteger occupation numbers is discussed in connection with the existence of non-$v$ representability for some Kohn-Sham noninteracting systems.
Keywords
Affiliated Institutions
Related Publications
Explicit local exchange-correlation potentials
The possibilities of the Hohenberg-Kohn-Sham local density theory are explored in view of recent advances in the theory of the interacting electron gas. The authors discuss and ...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
Generalized Kohn-Sham theory for electronic excitations in realistic systems
Instead of expressing the total energy of an interacting electron system as a functional of the one-particle density as in the Hohenberg-Kohn-Sham theory, we use a conventional ...
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the <i>v</i> -representability problem
Universal variational functionals of densities, first-order density matrices, and natural spin-orbitals are explicitly displayed for variational calculations of ground states of...
Wave propagation and localization in a long-range correlated random potential
We examine the effect of long-range spatially correlated disorder on the Anderson localization transition in $d=2+\ensuremath{\epsilon}$ dimensions. This is described as a phase...
Publication Info
- Year
- 1982
- Type
- article
- Volume
- 26
- Issue
- 3
- Pages
- 1200-1208
- Citations
- 670
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.26.1200