Abstract
We report an operationally simple, tin-free reductive dehalogenation system utilizing the well-known visible-light-activated photoredox catalyst Ru(bpy)(3)Cl(2) in combination with (i)Pr(2)NEt and HCO(2)H or Hantzsch ester as the hydrogen atom donor. Activated C-X bonds may be reduced in good yields with excellent functional-group tolerance and chemoselectivity over aryl and vinyl C-X bonds. The proposed mechanism involves visible-light excitation of the catalyst, which is reduced by the tertiary amine to produce the single-electron reducing agent Ru(bpy)(3)(+). A subsequent single-electron transfer generates the alkyl radical, which is quenched by abstraction of a hydrogen atom. Reductions can be accomplished on a preparative scale with as little as 0.05 mol % Ru catalyst.
Keywords
Affiliated Institutions
Related Publications
Photocatalysis and solar hydrogen production
Abstract Photocatalytic water splitting is a challenging reaction because it is an ultimate solution to energy and environmental issues. Recently, many new powdered photocatalys...
Overall water splitting using (oxy)nitride photocatalysts
Abstract Oxynitride photocatalysts with d 10 electronic configuration are presented as effective non-oxide catalysts for overall water splitting. Germanium nitride (β-Ge 3 N 4 )...
Nucleophilic Degradation of Fenitrothion Insecticide and Performance of Nucleophiles: A Computational Study
Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl ...
HyRec: A fast and highly accurate primordial hydrogen and helium recombination code
We present a state-of-the-art primordial recombination code, HYREC, including all the physical effects that have been shown to significantly affect recombination. The computatio...
Publication Info
- Year
- 2009
- Type
- article
- Volume
- 131
- Issue
- 25
- Pages
- 8756-8757
- Citations
- 949
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/ja9033582
- PMID
- 19552447