Abstract
We report calculations which show that the band structure of ${\mathrm{CoSb}}_{3}$ is typical of a narrow-band-gap semiconductor. The gap is strongly dependent on the relative position of the Sb atoms inside the unit cell. We obtain a band gap of 0.22 eV after minimization of these positions. This value is more than four times larger than the result of a previous calculation, which reported that the energy bands near the Fermi surface are unusual. The electronic states close to the Fermi level are properly described by a two-band Kane model. The calculated effective masses and band gap are in excellent agreement with Shubnikov--de Haas and Hall effect measurements. Recent measurements of the transport coefficients of this compound can be understood assuming it is a narrow-band-gap semiconductor, in agreement with our results.
Keywords
Affiliated Institutions
Related Publications
Electronic structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>. II. The nature of the optical band gaps
From band-structure calculations it is shown that MoSe2, MoS2, and WSe2 are indirect-gap semiconductors. The top of the valence band is at the Γ point and the bottom of the cond...
Luttinger Fermi surface of metallic gap spectral weight in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Nd</mml:mi></mml:mrow><mml:mrow><mml:mn>1.85</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ce</mml:mi></mml:mrow><mml:mrow><mml:mn>0.15</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="italic">y</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>
Angle-resolved photoemission measurements for bulk single crystals of ${\mathrm{Nd}}_{2\mathrm{\ensuremath{-}}\mathit{x}}$${\mathrm{Ce}}_{\mathit{x}}$${\mathrm{CuO}}_{4\mathrm{\...
Antiferromagnetic band structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>:</mml:mo></mml:math> Becke-3–Lee-Yang-Parr calculations
Using the Becke-3–Lee-Yang-Parr (B3LYP) functional, we have performed band-structure calculations on the high-temperature superconductor parent compound, La_2CuO_4. Under the re...
Band structure of semimagnetic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Hg</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">Mn</mml:mi><mml:mi>y</mml:mi></mml:msub><mml:mi mathvariant="normal">Te</mml:mi></mml:mrow></mml:math>quantum wells
The band structure of semimagnetic Hg_1-yMn_yTe/Hg_1-xCd_xTe type-III quantum\nwells has been calculated using eight-band kp model in an envelope function\napproach. Details of ...
Influence of quantum confinement on the electronic structure of the transition metal sulfide<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>T</mml:mi></mml:mrow></mml:math>S<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
Bulk MoS2, a prototypical layered transition-metal dichalcogenide, is an\nindirect band gap semiconductor. Reducing its size to a monolayer, MoS2\nundergoes a transition to the ...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 58
- Issue
- 23
- Pages
- 15620-15623
- Citations
- 192
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.58.15620