Abstract
We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene $p$-$n$-$p$ junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the $p$ and $n$ regions. These fractional plateaus, originating from chiral edge states equilibration at the $p$-$n$ interfaces, exhibit sensitivity to inter-edge backscattering which is found to be strong for some of the plateuas and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.
Keywords
Affiliated Institutions
Related Publications
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>Topological Order and the Quantum Spin Hall Effect
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge st...
Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene
There are two known distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems1,2, a...
Quantum Hall states at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>2</mml:mn><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:math>: Analysis of the particle-hole conjugates of the general level-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>k</mml:mi></mml:math>Read-Rezayi states
We study the nu=(2/(k + 2)) quantum Hall states which are particle-hole conjugates of the nu=(2/(k + 2)) Read-Rezayi states. We find that equilibration between the different mod...
Effect of nonparabolicity in GaAs/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ga</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Al</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>As semiconductor quantum wells
We investigate the effect of nonparabolicity in various bands of bulk semiconductors on the electronic-subband-edge energies in quantum wells. We compare the results from differ...
Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluri...
Publication Info
- Year
- 2007
- Type
- article
- Volume
- 99
- Issue
- 16
- Citations
- 462
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.99.166804
- PMID
- 17995279
- arXiv
- 0705.3044