Abstract

Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well-defined input thresholds for transition between states and prolonged signal output, and signal modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for “learned behavior” of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.

Keywords

BistabilityBiological systemSignal transductionSystems biologyComputer scienceSIGNAL (programming language)Cell signalingNegative feedbackBiological networkProcess (computing)Positive feedbackSignaling proteinsNeuroscienceBiologyPhysicsComputational biologyCell biologyEngineering

Affiliated Institutions

Related Publications

Publication Info

Year
1999
Type
article
Volume
283
Issue
5400
Pages
381-387
Citations
1707
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1707
OpenAlex

Cite This

Upinder S. Bhalla, Ravi Iyengar (1999). Emergent Properties of Networks of Biological Signaling Pathways. Science , 283 (5400) , 381-387. https://doi.org/10.1126/science.283.5400.381

Identifiers

DOI
10.1126/science.283.5400.381