Abstract
In this paper, we present extensive molecular mechanics and molecular dynamics studies on the energy, structure, mechanical and vibrational properties of single-wall carbon nanotubes. In our study we employed an accurate interaction potential derived from quantum mechanics. We explored the stability domains of circular and collapsed cross section structures of armchair (n,n), zigzag(n,0) , and chiral (2n,n) isolated single-walled carbon nanotubes (SWNTs) up to a circular cross section radius of 170 Å. We have found three different stability regions based on circular cross section radius. Below 10 Å radius only the circular cross section tubules are stable. Between 10 and 30 Å both circular and collapsed forms are possible, however, the circular cross section SWNTs are energetically favorable. Beyond 30 Å (crossover radius) the collapsed form becomes favorable for all three types of SWNTs. We report the behavior of the SWNTs with radii close to the crossover radius ((45, 45), (80, 0), (70, 35)) under uniaxial compressive and tensile loads. Using classical thin-plane approximation and variation of strain energy as a function of curvature, we calculated the bending modulus of the SWNTs. The calculated bending moduli are [kappa][sub](n,n)=963.44 GPa, [kappa][sub](n,0)=911.64 GPa, and [kappa][sub](2n,n)=935.48 GPa. We also calculated the interlayer spacing between the opposite sides of the tubes and found d[sub](n,n)= 3.38 angstroms, d[sub](2n,n)= 3.39 angstroms, and d[sub](n,0)= 3.41 angstroms. Using an enthalpy optimization method, we have determined the crystal structure and Young's modulus of (10,10) armchair, (17,0) zigzag and (12, 6) chiral forms (which have similar diameter as (10,10)). They all pack in a triangular pattern in two dimensions. Calculated lattice parameters are a[sub](10,10)= 16.78 angstroms, a[sub](17,0)= 16.52 angstroms and a[sub](12,6)= 16.52 angstroms. Using the second derivatives of potential we calculated Young's modulus along the tube axis and found Y[sub](10,10)=640.30 GPa, Y[sub](17,0)=648.43 GPa, and Y[sub](12,6)=673.94 GPa. Using the optimized structures of (10,10), (12,6) and (17,0), we determined the vibrational modes and frequencies. Here, we report the highest in-plane mode, compression mode, breathing mode, shearing mode and relevant cyclop mode frequencies.
Keywords
Affiliated Institutions
Related Publications
Crystalline Ropes of Metallic Carbon Nanotubes
Fullerene single-wall nanotubes (SWNTs) were produced in yields of more than 70 percent by condensation of a laser-vaporized carbon-nickel-cobalt mixture at 1200°C. X-ray diffra...
Elastic strain of freely suspended single-wall carbon nanotube ropes
We have induced large elastic strains in ropes of single-wall carbon nanotubes, using an atomic force microscope in lateral force mode. Freely suspended ropes were observed to d...
Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containi...
The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light
When a shaft of circular section is revolving uniformly, and is transmitting power uniformly, a row of particles originally in a line parallel to the axis will lie in a spiral o...
First‐Year <i>Wilkinson Microwave Anisotropy Probe</i> ( <i>WMAP</i> ) Observations: Preliminary Maps and Basic Results
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 9
- Issue
- 3
- Pages
- 184-191
- Citations
- 503
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1088/0957-4484/9/3/007