Abstract
This work assesses the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional for the prediction of lattice constants and band gaps using a set of 40 simple and binary semiconductors. An extensive analysis of both basis set and relativistic effects is given. Results are compared with established pure density functionals. For lattice constants, HSE outperforms local spin-density approximation (LSDA) with a mean absolute error (MAE) of 0.037 Å for HSE vs 0.047 Å for LSDA. For this specific test set, all pure functionals tested produce MAEs for band gaps of 1.0–1.3 eV, consistent with the very well-known fact that pure functionals severely underestimate this property. On the other hand, HSE yields a MAE smaller than 0.3 eV. Importantly, HSE correctly predicts semiconducting behavior in systems where pure functionals erroneously predict a metal, such as, for instance, Ge. The short-range nature of the exchange integrals involved in HSE calculations makes their computation notably faster than regular hybrid functionals. The current results, paired with earlier work, suggest that HSE is a fast and accurate alternative to established density functionals, especially for solid state calculations.
Keywords
Affiliated Institutions
Related Publications
From molecules to solids with the DMol3 approach
Recent extensions of the DMol3 local orbital density functional method for band structure calculations of insulating and metallic solids are described. Furthermore the method fo...
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
Generalized gradient approximations (GGA’s) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang...
Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities
A set of 146 well-established ionization potentials and electron affinities is presented. This set, referred to as the G2 ion test set, includes the 63 atoms and molecules whose...
<i>Ab initio</i>calculation of phonon dispersions in semiconductors
The density-functional linear-response approach to lattice-dynamical calculations in semiconductors is presented in full detail. As an application, we calculate complete phonon ...
Precise density-functional method for periodic structures
A density-functional method for calculations on periodic systems (periodicity in one, two, or three dimensions) is presented in which all aspects of numerical precision are effi...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 123
- Issue
- 17
- Pages
- 174101-174101
- Citations
- 1944
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.2085170