Abstract
The entanglement of a pure state of a pair of quantum systems is defined as\nthe entropy of either member of the pair. The entanglement of formation of a\nmixed state is defined as the minimum average entanglement of an ensemble of\npure states that represents the given mixed state. An earlier paper [Phys. Rev.\nLett. 78, 5022 (1997)] conjectured an explicit formula for the entanglement of\nformation of a pair of binary quantum objects (qubits) as a function of their\ndensity matrix, and proved the formula to be true for a special class of mixed\nstates. The present paper extends the proof to arbitrary states of this system\nand shows how to construct entanglement-minimizing pure-state decompositions.\n
Keywords
Affiliated Institutions
Related Publications
Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the <i>v</i> -representability problem
Universal variational functionals of densities, first-order density matrices, and natural spin-orbitals are explicitly displayed for variational calculations of ground states of...
The Theory of Matrices
Volume 2: XI. Complex symmetric, skew-symmetric, and orthogonal matrices: 1. Some formulas for complex orthogonal and unitary matrices 2. Polar decomposition of a complex matrix...
Tensor Decompositions and Applications
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions...
Precise density-functional method for periodic structures
A density-functional method for calculations on periodic systems (periodicity in one, two, or three dimensions) is presented in which all aspects of numerical precision are effi...
Electronic structures of dynamically stable As<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, Sb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and Bi<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow/><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>crystal polymorphs
The relationships between the atomic arrangements, electronic structures, and energetics of three sesquioxides, As2O3, Sb2O3, and Bi2O3, are systematically investigated by first...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 80
- Issue
- 10
- Pages
- 2245-2248
- Citations
- 7944
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.80.2245