Abstract

Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed “ePlant” (http://bar.utoronto.ca/eplant) – a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the “3D Data Display Initiative” (http://3ddi.org).

Keywords

VisualizationComputer scienceBiological dataSystems biologySuiteComputational biologyOrganismBiologyBioinformaticsData miningGenetics

Affiliated Institutions

Related Publications

Publication Info

Year
2011
Type
article
Volume
6
Issue
1
Pages
e15237-e15237
Citations
61
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

61
OpenAlex

Cite This

Geoffrey Fucile, David Di Biase, Hardeep K. Nahal-Bose et al. (2011). ePlant and the 3D Data Display Initiative: Integrative Systems Biology on the World Wide Web. PLoS ONE , 6 (1) , e15237-e15237. https://doi.org/10.1371/journal.pone.0015237

Identifiers

DOI
10.1371/journal.pone.0015237