Keywords
Affiliated Institutions
Related Publications
Unsupervised Feature Learning via Non-parametric Instance Discrimination
Neural net classifiers trained on data with annotated class labels can also capture apparent visual similarity among categories without being directed to do so. We study whether...
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more...
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that...
Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)
Boosting is one of the most important recent developments in\nclassification methodology. Boosting works by sequentially applying a\nclassification algorithm to reweighted versi...
Fractional Max-Pooling
Convolutional networks almost always incorporate some form of spatial pooling, and very often it is alpha times alpha max-pooling with alpha=2. Max-pooling act on the hidden lay...
Publication Info
- Year
- 1996
- Type
- article
- Volume
- 24
- Issue
- 3
- Pages
- 173-202
- Citations
- 160
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1007/bf00058611