Abstract

Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha<sup>-1</sup> dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g<sup>-1</sup> dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g<sup>-1</sup>, with a median of 34 particles g<sup>-1</sup>. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.

Keywords

MicroplasticsSewage sludgeEnvironmental scienceSoil waterSewageSewage treatmentContaminationFertilizerAgricultureSewage sludge treatmentWastewaterWaste managementEnvironmental engineeringEnvironmental chemistryAgronomyEcologyChemistryBiologySoil scienceEngineering

Affiliated Institutions

Related Publications

Wastewater engineering : treatment and reuse

1. Wastewater Engineering: An Overview 2. Constituents in Wastewater 3. Analysis and Selection of Wastewater Flowrates and Constituent Loadings 4. Introduction to Process Analys...

2004 McGraw-Hill eBooks 9089 citations

Publication Info

Year
2019
Type
article
Volume
671
Pages
411-420
Citations
1295
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1295
OpenAlex

Cite This

Fabio Corradini, Pablo Meza, Raúl Eguiluz et al. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. The Science of The Total Environment , 671 , 411-420. https://doi.org/10.1016/j.scitotenv.2019.03.368

Identifiers

DOI
10.1016/j.scitotenv.2019.03.368