Exchange coupling in magnetic heterostructures

1993 Physical review. B, Condensed matter 409 citations

Abstract

Many structures consisting of magnetic layers separated by a nonmagnetic spacer layer show an oscillatory exchange coupling. This behavior is explained in terms of a simple model that shows that the Fermi surface of the spacer-layer material is responsible for the oscillatory coupling. The periods of the oscillatory coupling are set by extremal spanning vectors of the Fermi surface of the spacer-layer material. The strength of the coupling depends both on the geometry of the Fermi surface and on the reflection amplitudes for electrons scattering from the interfaces between the spacer layers and the magnetic layers. To test this and related models, the extremal spanning vectors and the associated Fermi-surface geometrical factors have been calculated for a large set of spacer-layer materials and interface orientations. These models are at least consistent with the experimental data. All measured oscillation periods are consistent with the calculated periods, but particularly for transition metals there are many more periods calculated than are seen experimentally.

Keywords

Condensed matter physicsCoupling (piping)Fermi surfaceOscillation (cell signaling)HeterojunctionScatteringFermi contact interactionInductive couplingFermi levelMaterials scienceElectronQuantum oscillationsFermi gasFermi Gamma-ray Space TelescopePhysicsParamagnetismOpticsQuantum mechanicsChemistry

Affiliated Institutions

Related Publications

Publication Info

Year
1993
Type
article
Volume
48
Issue
10
Pages
7238-7258
Citations
409
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

409
OpenAlex

Cite This

M. D. Stiles (1993). Exchange coupling in magnetic heterostructures. Physical review. B, Condensed matter , 48 (10) , 7238-7258. https://doi.org/10.1103/physrevb.48.7238

Identifiers

DOI
10.1103/physrevb.48.7238