Abstract
A boundary condition method is developed for deriving the coefficient ${E}_{2n}$ in the power series expansion of the energy of an electron of wave number $k$ moving in the lattice of an alkali metal. (The entire calculation proceeds within the framework of the Wigner-Seitz atomic sphere approximation.) If the electron wave function is expanded as ${\ensuremath{\psi}}_{k}(\mathbf{r})={e}^{{i}^{\mathbf{k}\ifmmode\cdot\else\textperiodcentered\fi{}\mathbf{r}}}({u}_{0}+{u}_{1}k+{u}_{2}{k}^{2}+\ensuremath{\cdots})$ it is shown that the boundary condition $[(\frac{\ensuremath{\partial}}{\ensuremath{\partial}r})(s \mathrm{part}\mathrm{of} {u}_{2n})]r={r}_{s}=0$ leads naturally to an evaluation of ${E}_{2n}$ in terms of values at ${r}_{s}$ of homogeneous solutions of the Schr\"odinger equation and their derivatives with respect to energy and radius. In this way, a simple expression for ${E}_{4}$ is obtained analogous to that derived by Bardeen for ${E}_{2}$. For the case of metallic lithium, this expression leads to the value ${E}_{4}=\ensuremath{-}0.031$, which agrees with that obtained by the more tedious method of evaluating the expectation value of the Hamiltonian using a wave function correct to the second order in $k$.
Keywords
Affiliated Institutions
Related Publications
Correlation Energy of a Free Electron Gas
The limits of validity of the correlation-energy calculations in the regions of high density, low density, and actual metallic electron densities are discussed. Simple physical ...
Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Li</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>,</mml:mo></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-correlation potential ${v}_{\mathrm{xc}}$ and the energy density ${\ensure...
An Improved Calculation of the Energies of Metallic Li and Na
The method of calculation used in the present work is a modification of that used by Wigner and Seitz in their original calculations of the energies of metallic Li and Na. The m...
High-Frequency Damping in a Degenerate Electron Gas
A closed form has been derived for the dissipative part of the complex frequency- and wave-number-dependent dielectric constant of a degenerate electron gas, $\ensuremath{\epsil...
Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling
For a uniform electron gas of density n=${\mathit{n}}_{\mathrm{\ensuremath{\uparrow}}}$+${\mathit{n}}_{\mathrm{\ensuremath{\downarrow}}}$=3/4\ensuremath{\pi}${\mathit{r}}_{\math...
Publication Info
- Year
- 1952
- Type
- article
- Volume
- 85
- Issue
- 2
- Pages
- 227-230
- Citations
- 51
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.85.227