Abstract
Previous article Next article Fractional Brownian Motions, Fractional Noises and ApplicationsBenoit B. Mandelbrot and John W. Van NessBenoit B. Mandelbrot and John W. Van Nesshttps://doi.org/10.1137/1010093PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] I. Adelman, Long cycles—fact or artifact?, Amer. Economic Rev., 60 (1965), 444–463 Google Scholar[2] William Feller, The asymptotic distribution of the range of sums of independent random variables, Ann. Math. Statistics, 22 (1951), 427–432 MR0042626 0043.34201 CrossrefISIGoogle Scholar[3] I. M. Gel'fand and , N. Ya. Vilenkin, Generalized functions. Vol. 4, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977]xiv+384 MR0435834 Google Scholar[4] C. W. J. Granger, The typical spectral shape of an economic variable, Econometrica, 34 (1966), 150–161 CrossrefISIGoogle Scholar[5] G. A. Hunt, Random Fourier transforms, Trans. Amer. Math. Soc., 71 (1951), 38–69 MR0051340 0043.30601 CrossrefISIGoogle Scholar[6] H. E. Hurst, , R. P. Black and , Y. M. Sinaika, Long Term Storage in Reservoirs. An Experimental Study, Constable, London, 1965 Google Scholar[7] A. N. Kolmogoroff, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.), 26 (1940), 115–118 MR0003441 0022.36001 Google Scholar[8] John Lamperti, Semi-stable stochastic processes, Trans. Amer. Math. Soc., 104 (1962), 62–78 MR0138128 0286.60017 CrossrefGoogle Scholar[9] Paul Lévy, Random functions: General theory with special reference to Laplacian random functions, Univ. California Publ. Statist., 1 (1953), 331–390 MR0055607 0052.14402 Google Scholar[10] Michel Loève, Probability theory, 2nd ed. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-New York-London, 1960xvi+685 MR0123342 0095.12201 Google Scholar[11] Benoı⁁t Mandelbrot, Une classe processus stochastiques homothétiques à soi; application à la loi climatologique H. E. Hurst, C. R. Acad. Sci. Paris, 260 (1965), 3274–3277 MR0176521 0127.09501 Google Scholar[12] B. Mandelbrot, Self-similar error-clusters in communication systems and the concept of conditional stationarity, IEEE Trans. Comet. Tech., COM-13 (1965), 71–90 10.1109/TCOM.1965.1089090 CrossrefISIGoogle Scholar[13] B. Mandelbrot, Noises with an $l/f$ spectrum, a bridge between direct current and white noise, IEEE Trans. Information Theory, IT-13 (1967), 289–298 10.1109/TIT.1967.1053992 0148.40507 CrossrefISIGoogle Scholar[14] Benoit Mandelbrot, Sporadic random functions and conditional spectral analysis: Self-similar examples and limitsProc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences, Univ. California Press, Berkeley, Calif., 1967, 155–179 MR0224243 0189.18302 Google Scholar[15] B. Mandelbrot and , J. R. Wallis, Noah, Joseph and operational hydrology, Water Resources Research, to appear Google Scholar[16] B. Mandelbrot and , J. R. Wallis, Computer experiments with fractional Gaussian noise, Water Resources Research, to appear Google Scholar[17] B. Mandelbrot and , J. R. Wallis, Some long run properties of geophysical records, Water Resources Research, to appear. Google Scholar[18] G. Maruyama, The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyusyu Univ. A., 4 (1949), 45–106 MR0032127 0045.40602 CrossrefGoogle Scholar[19] M. Rosenblatt, Independence and dependenceProc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, 431–443 MR0133863 0105.11802 Google Scholar[20] G. I. Taylor, Statistical theory of turbulence, Proc. Roy. Sac. Ser. A, 151 (1935), 421–478 CrossrefGoogle Scholar[21] H. Weyl, Bemerkungen zum Begriff der Differential-Quotenten gebrochener Ordnung, Vierteljschr. Naturforsch. Ges. Zürich, 62 (1967), 296–302 Google Scholar[22] A. M. Yaglom, Correlation theory of processes with random stationary nth increments, Amer. Math. Soc. Transl. (2), 8 (1958), 87–141 MR0091554 0080.34903 CrossrefGoogle Scholar[23] A. M. Yaglom, L. M. LeCam and , J. Neyman, Stationary Gaussian processes satisfying the strong mixing condition and best predictable functionalsBernoulli-Bayes-Laplace Anniversary Volume, Springer-Verlag, New York, 1965, 241–252 0142.13904 CrossrefGoogle Scholar[24] A. M. Yaglom, Outline of some topics in linear extrapolation of stationary random processesProc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II:Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, 259–278 MR0215358 0189.18401 Google Scholar[25] Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952vi+329, 2nd ed. MR0076084 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Mean square stability of stochastic theta method for stochastic differential equations driven by fractional Brownian motionJournal of Computational and Applied Mathematics, Vol. 420 | 1 Mar 2023 Cross Ref ARMA–GARCH model with fractional generalized hyperbolic innovationsFinancial Innovation, Vol. 8, No. 1 | 15 May 2022 Cross Ref Fokker–Planck equation of the fractional Brownian motionInternational Journal of Non-Linear Mechanics, Vol. 147 | 1 Dec 2022 Cross Ref A generative model for fBm with deep ReLU neural networksJournal of Complexity, Vol. 73 | 1 Dec 2022 Cross Ref Emergence of non-Fickian transport in truncated pluri-Gaussian permeability fieldsGEM - International Journal on Geomathematics, Vol. 13, No. 1 | 1 October 2022 Cross Ref A comparison of maximum likelihood and absolute moments for the estimation of Hurst exponents in a stationary frameworkCommunications in Nonlinear Science and Numerical Simulation, Vol. 114 | 1 Nov 2022 Cross Ref Multiscaling and rough volatility: An empirical investigationInternational Review of Financial Analysis, Vol. 84 | 1 Nov 2022 Cross Ref Multivariate claim processes with rough intensities: Properties and estimationInsurance: Mathematics and Economics, Vol. 107 | 1 Nov 2022 Cross Ref Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFAPhysica A: Statistical Mechanics and its Applications, Vol. 603 | 1 Oct 2022 Cross Ref On the model of random walk with multiple memory structurePhysica A: Statistical Mechanics and its Applications, Vol. 603 | 1 Oct 2022 Cross Ref Self-similarity and response of fractional differential equations under white noise inputProbabilistic Engineering Mechanics, Vol. 70 | 1 Oct 2022 Cross Ref The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motionStatistics & Probability Letters, Vol. 189 | 1 Oct 2022 Cross Ref Discrete scaling and criticality in a chain of adaptive excitable integratorsChaos, Solitons & Fractals, Vol. 163 | 1 Oct 2022 Cross Ref Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater SoundRemote Sensing, Vol. 14, No. 19 | 29 September 2022 Cross Ref Chaos Analysis Framework: How to Safely Identify and Quantify Time-Series DynamicsNonlinear Systems - Recent Developments and Advances [Working Title] | 22 September 2022 Cross Ref Asymptotic of the running maximum distribution of a Gaussian BridgeStochastic Analysis and Applications, Vol. 28 | 19 September 2022 Cross Ref Wavelet eigenvalue regression in high dimensionsStatistical Inference for Stochastic Processes, Vol. 1 | 18 September 2022 Cross Ref Data-Driven Modeling of Non-Markovian Noise in Semiconductor Lasers2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) | 12 Sep 2022 Cross Ref Continuous wavelet estimation for multivariate fractional Brownian motionPakistan Journal of Statistics and Operation Research | 10 September 2022 Cross Ref Persistence in daily returns of stocks with highest market capitalization in the Indian marketDigital Finance, Vol. 503 | 9 September 2022 Cross Ref Bayesian semiparametric long memory models for discretized event dataThe Annals of Applied Statistics, Vol. 16, No. 3 | 1 Sep 2022 Cross Ref Scale invariance in fNIRS as a measurement of cognitive loadCortex, Vol. 154 | 1 Sep 2022 Cross Ref Efficient calculation of fractal properties via the Higuchi methodNonlinear Dynamics, Vol. 109, No. 4 | 23 June 2022 Cross Ref N-Fold Compound Option Fuzzy Pricing Based on the Fractional Brownian MotionInternational Journal of Fuzzy Systems, Vol. 24, No. 6 | 9 May 2022 Cross Ref On the nature and propagation of errors in roughness parameters obtained from spectral analysis of atomic force microscopy topographic imagesJournal of Vacuum Science & Technology A, Vol. 40, No. 5 | 1 Sep 2022 Cross Ref Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processesChaos, Solitons & Fractals, Vol. 162 | 1 Sep 2022 Cross Ref Study on the Effect of Judgment Excitation Mode to Relieve Driving Fatigue Based on MF-DFABrain Sciences, Vol. 12, No. 9 | 6 September 2022 Cross Ref Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitionsChaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 32, No. 9 | 1 Sep 2022 Cross Ref How critical is brain criticality?Trends in Neurosciences, Vol. 21 | 1 Sep 2022 Cross Ref Estimation of hurst exponent for sequential monitoring of clinical trials with covariate adaptive randomizationContemporary Clinical Trials, Vol. 120 | 1 Sep 2022 Cross Ref A GMM approach to estimate the roughness of stochastic volatilityJournal of Econometrics, Vol. 57 | 1 Sep 2022 Cross Ref Frequency–frequency correlations of single-trajectory spectral densities of Gaussian processesNew Journal of Physics, Vol. 24, No. 9 | 27 September 2022 Cross Ref Dispersion heterogeneous recurrence analysis and its use on fault detectionCommunications in Nonlinea
Keywords
Related Publications
Contraction Mappings in the Theory Underlying Dynamic Programming
Next article Contraction Mappings in the Theory Underlying Dynamic ProgrammingEric V. DenardoEric V. Denardohttps://doi.org/10.1137/1009030PDFBibTexSections ToolsAdd to favorite...
On the Construction and Comparison of Difference Schemes
Previous article Next article On the Construction and Comparison of Difference SchemesGilbert StrangGilbert Stranghttps://doi.org/10.1137/0705041PDFBibTexSections ToolsAdd to fa...
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
Previous article Next article An Algorithm for Least-Squares Estimation of Nonlinear ParametersDonald W. MarquardtDonald W. Marquardthttps://doi.org/10.1137/0111030PDFPDF PLUSBi...
A Theory of the Allocation of Time
Journal Article A Theory of the Allocation of Time Get access Gary S. Becker Gary S. Becker Columbia University Search for other works by this author on: Oxford Academic Google ...
Chemical Characteristics of Oceanic Basalts and the Upper Mantle
Research Article| July 01, 1965 Chemical Characteristics of Oceanic Basalts and the Upper Mantle A. E. J ENGEL; A. E. J ENGEL Dept. Earth Sciences, University of California, La ...
Publication Info
- Year
- 1968
- Type
- article
- Volume
- 10
- Issue
- 4
- Pages
- 422-437
- Citations
- 7486
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1137/1010093