Abstract
We treat the problem of edge detection as one of statistical inference. Local edge cues, implemented by filters, provide information about the likely positions of edges which can be used as input to higher-level models. Different edge cues can be evaluated by the statistical effectiveness of their corresponding filters evaluated on a dataset of 100 presegmented images. We use information theoretic measures to determine the effectiveness of a variety of different edge detectors working at multiple scales on black and white and color images. Our results give quantitative measures for the advantages of multi-level processing, for the use of chromaticity in addition to greyscale, and for the relative effectiveness of different detectors.
Keywords
Affiliated Institutions
Related Publications
A Three-Dimensional Edge Operator
Modern scanning techniques, such as computed tomography, have begun to produce true three-dimensional imagery of internal structures. The first stage in finding structure in the...
SwinIR: Image Restoration Using Swin Transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). W...
Image and video upscaling from local self-examples
We propose a new high-quality and efficient single-image upscaling technique that extends existing example-based super-resolution frameworks. In our approach we do not rely on a...
Geodesic Active Regions for Texture Segmentation
This paper proposes a framework for segmenting different textured areas over synthetic or real textured frames by curves propagation. We assume that the system has the ability t...
FCOS: Fully Convolutional One-Stage Object Detection
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all stat...
Publication Info
- Year
- 2003
- Type
- article
- Pages
- 573-579
- Citations
- 87
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/cvpr.1999.786996