Abstract
A measure of genetic distance (D) based on the identity of genes between populations is formulated. It is defined as D = -logeI, where I is the normalized identity of genes between two populations. This genetic distance measures the accumulated allele differences per locus. If the rate of gene substitution per year is constant, it is linearly related to the divergence time between populations under sexual isolation. It is also linearly related to geographical distance or area in some migration models. Since D is a measure of the accumulated number of codon differences per locus, it can also be estimated from data on amino acid sequences in proteins even for a distantly related species. Thus, if enough data are available, genetic distance between any pair of organisms can be measured in terms of D. This measure is applicable to any kind of organism without regard to ploidy or mating scheme.
Keywords
Related Publications
Structure and History of African Elephant Populations: I. Eastern and Southern Africa
Patterns of restriction site variation within mitochondrial DNA (mtDNA) of 270 individuals were used to examine the current structure of savanna elephant populations and to infe...
The history of effective population size and genetic diversity in the Yellowstone grizzly ( <i>Ursus arctos</i> ): Implications for conservation
Protein, mtDNA, and nuclear microsatellite DNA analyses have demonstrated that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arcto...
Molecular signatures of Pleistocene sea‐level changes that affected connectivity among freshwater shrimp in Indo‐Australian waters
Abstract A major paradigm in evolutionary biology asserts that global climate change during the Pleistocene often led to rapid and extensive diversification in numerous taxa. Re...
Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history
Since the 1920s, population geneticists have had measures that describe how genetic variation is distributed spatially within a species’ geographical range. Modern genetic surve...
Subtle population structuring within a highly vagile marine invertebrate, the veined squid <i>Loligo forbesi</i>, demonstrated with microsatellite DNA markers
Microsatellite DNA markers were applied for the first time in a population genetic study of a cephalopod and compared with previous estimates of genetic differentiation obtained...
Publication Info
- Year
- 1972
- Type
- article
- Volume
- 106
- Issue
- 949
- Pages
- 283-292
- Citations
- 9733
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1086/282771