Abstract
Registration is a fundamental task in computer vision. The Iterative Closest Point (ICP) algorithm is one of the widely-used methods for solving the registration problem. Based on local iteration, ICP is however well-known to suffer from local minima. Its performance critically relies on the quality of initialization, and only local optimality is guaranteed. This paper provides the very first globally optimal solution to Euclidean registration of two 3D point sets or two 3D surfaces under the L2 error. Our method is built upon ICP, but combines it with a branch-and-bound (BnB) scheme which searches the 3D motion space SE(3) efficiently. By exploiting the special structure of the underlying geometry, we derive novel upper and lower bounds for the ICP error function. The integration of local ICP and global BnB enables the new method to run efficiently in practice, and its optimality is exactly guaranteed. We also discuss extensions, addressing the issue of outlier robustness.
Keywords
Affiliated Institutions
Related Publications
A Global Geometric Framework for Nonlinear Dimensionality Reduction
Scientists working with large volumes of high-dimensional data, such as global climate patterns, stellar spectra, or human gene distributions, regularly confront the problem of ...
Graphical templates for model registration
A new method of model registration is proposed using graphical templates. A graph of landmarks is chosen in the template image. All possible candidates for these landmarks are f...
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To...
Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents
We study the problem of flocking and coordination of a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for...
PCA-SIFT: a more distinctive representation for local image descriptors
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) rec...
Publication Info
- Year
- 2013
- Type
- article
- Citations
- 466
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/iccv.2013.184