Abstract
High-entropy alloys (HEAs) are a relatively new class of materials that have gained considerable attention from the metallurgical research community over recent years. They are characterised by their unconventional compositions, in that they are not based around a single major component, but rather comprise multiple principal alloying elements. Four core effects have been proposed in HEAs: (1) the entropic stabilisation of solid solutions, (2) the severe distortion of their lattices, (3) sluggish diffusion kinetics and (4) that properties are derived from a cocktail effect. By assessing these claims on the basis of existing experimental evidence in the literature, as well as classical metallurgical understanding, it is concluded that the significance of these effects may not be as great as initially believed. The effect of entropic stabilisation does not appear to be overarching, insufficient evidence exists to establish the strain in the lattices of HEAs, and rapid precipitation observed in some HEAs suggests their diffusion kinetics are not necessarily anomalously slow in comparison to conventional alloys. The meaning and influence of the cocktail effect is also a matter for debate. Nevertheless, it is clear that HEAs represent a stimulating opportunity for the metallurgical research community. The complex nature of their compositions means that the discovery of alloys with unusual and attractive properties is inevitable. It is suggested that future activity regarding these alloys seeks to establish the nature of their physical metallurgy, and develop them for practical applications. Their use as structural materials is one of the most promising and exciting opportunities. To realise this ambition, methods to rapidly predict phase equilibria and select suitable HEA compositions are needed, and this constitutes a significant challenge. However, while this obstacle might be considerable, the rewards associated with its conquest are even more substantial. Similarly, the challenges associated with comprehending the behaviour of alloys with complex compositions are great, but the potential to enhance our fundamental metallurgical understanding is more remarkable. Consequently, HEAs represent one of the most stimulating and promising research fields in materials science at present.
Keywords
Affiliated Institutions
Related Publications
Phase Change and Mechanical Behaviors of Ti<i>x</i>CoCrFeNiCu1−<i>y</i>Al<i>y</i> High Entropy Alloys
Abstract The alloying effects of the Al, Ti, Cu, and Co in a typical TixCoCrFeNiCu1−yAly high entropy alloy (HEA) were systematically studied. The phase change of the HEAs is cl...
Exploration and Development of High Entropy Alloys for Structural Applications
We develop a strategy to design and evaluate high-entropy alloys (HEAs) for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150...
Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
Phase stability is an important topic for high entropy alloys (HEAs), but the understanding to it is very limited. The capability to predict phase stability from fundamental pro...
A critical review of high entropy alloys and related concepts
High entropy alloys (HEAs) are barely 12 years old. The field has stimulated new ideas and has inspired the exploration of the vast composition space offered by multi-principal ...
Mechanical Properties and Structures of High Entropy Alloys and Bulk Metallic Glasses Composites
Bulk metallic glasses (BMGs) and high entropy alloys (HEAs) have unique structures at the length scales of micro- and nano-metre, and exhibit unique properties, which make them ...
Publication Info
- Year
- 2016
- Type
- article
- Volume
- 61
- Issue
- 3
- Pages
- 183-202
- Citations
- 920
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/09506608.2016.1180020