Abstract
We have developed a model of foraging behaviour of a honeybee colony based on reaction-diffusion equations and have studied how mapping the information about the explored environment to the hive determines this behaviour. The model utilizes two dominant components of colony's foraging behaviour — the recruitment to the located nectar sources and the abandonment of them. The recruitment is based upon positive feedback, i.e autocatalytic replication of information about the located source. If every potential forager in the hive, the onlooker, acquires information about all located sources, a common information niche is formed, which leads to the rapid selection of the most profitable nectar source. If the onlookers acquire information about some parts of the environment and slowly learn about the other parts, different information niches where individuals are associated mainly with a particular food source are formed, and the correspondent foraging trails coexist for longer periods. When selected nectar source becomes depleted, the foragers switch over to another, more profitable source. The faster the onlookers learn about the entire environment, the faster that switching occurs.
Keywords
Affiliated Institutions
Related Publications
Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models
To conserve biodiversity, it is necessary to understand how species are distributed and which aspects of the environment determine distributions. In large parts of the world and...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 09
- Issue
- 02
- Pages
- 181-193
- Citations
- 72
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1023/a:1015652810815