Abstract
Sunlight is directly converted to chemical energy in hydrogen-evolving photoelectrochemical cells with semiconductor electrodes. Their Gibbs free energy efficiency of solar-to-hydrogen conversion, 13.3 percent, exceeds the solar-to-fuel conversion efficiency of green plants and approaches the solar-to-electrical conversion efficiency of the best p-n junction cells. In hydrogen-evolving photoelectrodes, electron-hole pairs photogenerated in the semiconductor are separated at electrical microcontacts between the semiconductor and group VIII metal catalyst islands. Conversion is efficient when the island diameters are small relative to the wavelengths of sunlight exciting the semiconductor; when the island spacings are smaller than the diffusion length of electrons at the semiconductor surface; when the height of the potential energy barriers that separate the photogenerated electrons from holes at the semiconductor surface is raised by hydrogen alloying of the islands; when radiationless recombination of electron-hole pairs at the semiconductor-solution interface between the islands is suppressed by controlling the semiconductor surface chemistry; and when the semiconductor has an appropriate band gap (1.0 to 1.8 electron volts) for efficient solar conversion.
Keywords
Related Publications
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
Solar cells based on dye-sensitized mesoporous films of TiO2 arelow-cost alternatives to conventional solid-state devices1. Impressive solar-to-electrical energy conversion effi...
Dye-Sensitized Solid-State Heterojunction Solar Cells
Abstract The dye-sensitized solar cell (DSSC) provides a technically and economically viable alternative concept to present-day p–n junction photovoltaic devices. In contrast to...
Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions
The photosensitivity of semiconducting polymers can be enhanced by blending donor and acceptor polymers to optimize photoinduced charge separation. We describe a novel phase-sep...
Perspectives for dye-sensitized nanocrystalline solar cells
The dye-sensitized solar cells (DYSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the c...
Sb<sub>2</sub>S<sub>3</sub>-Sensitized Nanoporous TiO<sub>2</sub> Solar Cells
Extremely Thin Absorber (ETA) solar cells were made using chemical-bath-deposited Sb2S3 as the absorber and TiO2/CuSCN as the interpenetrating electron/hole conductors. A solar ...
Publication Info
- Year
- 1984
- Type
- article
- Volume
- 223
- Issue
- 4641
- Pages
- 1141-1148
- Citations
- 230
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1126/science.223.4641.1141