Abstract
We have investigated the method of effective potentials for replacing the core electrons in molecular calculations. The effective potential has been formulated in a way which simplifies computations while producing wave functions of ab initio quality. The effective potential is expressed in an analytic form which (i) represents the actual ab initio nonlocal potential (as defined by the matrix elements for a given basis set) and (ii) permits efficient computations of the effective-potential integrals (by incorporating the properties of Gaussian basis functions). To minimize the number of basis functions required in the molecular calculations, we define a new ab initio effective potential derived from modified Hartree-Fock valence orbitals whose core character has been removed. The effective-potential method as formulated becomes a very strong and reliable tool in attempting calculations on very large molecules. Applications to Li, Na, and K are presented.
Keywords
Affiliated Institutions
Related Publications
<i>Ab Initio</i> Effective Potentials for Use in Molecular Calculations
We have investigated the efficacy of ab initio effective potentials in replacing the core electrons of atoms for use in molecular calculations. The effective potentials are obta...
<i>Ab initio</i> effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons
A formalism is developed for obtaining ab initio effective core potentials from numerical Hartree–Fock wavefunctions and such potentials are presented for C, N, O, F, Cl, Fe, Br...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH
A method is described for obtaining l-dependent relativistic effective core potentials (ECPs) from Dirac–Fock self-consistent field atomic wave functions. These potentials are d...
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. II. All-electron comparisons and modifications of the procedure
Recently methods have been developed [L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976)] to replace the core electrons of atoms by ab initio effective co...
Publication Info
- Year
- 1974
- Type
- article
- Volume
- 10
- Issue
- 5
- Pages
- 1528-1540
- Citations
- 183
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physreva.10.1528